
pulse: Accelerating Distributed Pointer-Traversals on
Disaggregated Memory

Yupeng Tang
Yale University

New Haven, United States

Seung-seob Lee
Yale University

New Haven, United States

Abhishek Bhattacharjee
Yale University

New Haven, United States

Anurag Khandelwal
Yale University

New Haven, United States

Abstract
Caches at CPU nodes in disaggregated memory architec-
tures amortize the high data access latency over the net-
work. However, such caches are fundamentally unable to
improve performance for workloads requiring pointer traver-
sals across linked data structures. We argue for accelerating
these pointer traversals closer to disaggregated memory in
a manner that preserves expressiveness for supporting vari-
ous linked structures, ensures energy efficiency and perfor-
mance, and supports distributed execution. We design pulse,
a distributed pointer-traversal framework for rack-scale dis-
aggregated memory to meet all the above requirements. Our
evaluation of pulse shows that it enables low-latency, high-
throughput, and energy-efficient execution for a wide range
of pointer traversal workloads on disaggregated memory
that fare poorly with caching alone.

CCS Concepts: • Computer systems organization →
Cloud computing; • Hardware → Networking hard-
ware; • Information systems→ Data structures.

Keywords: Disaggregated memory, Pointer-traversals, Near-
memory processing, Programmable networks, FPGAs
ACM Reference Format:
Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag
Khandelwal. 2025. pulse: Accelerating Distributed Pointer-
Traversals on Disaggregated Memory. In Proceedings of the 30th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 1 (ASPLOS ’25),
March 30-April 3, 2025, Rotterdam, Netherlands.ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3669940.3707253

1 Introduction
Driven by increasing demands for memory capacity and
bandwidth [35, 50, 54, 112, 133, 154, 160], poor scaling [85,
99, 134] and resource inefficiency [72, 122] of DRAM, and

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707253

improvements in Ethernet-based network speeds [12, 39],
recent years have seen significant efforts towards memory
disaggregation [42, 46, 72, 100, 130]. Rather than scaling up
a server’s DRAM capacity and bandwidth, such proposals
advocate disaggregating much of the memory over the net-
work. The result is a set of CPU nodes equipped with a small
amount of DRAM used as cache1, accessing memory across
a set of network-attached memory nodes with large DRAM
pools (Fig. 1 (top)). With allocation flexibility across CPU and
memory nodes, disaggregation enables high utilization and
elasticity. Despite drastic improvements in recent years, the
limited bandwidth and latency to network-attached memory
remain a hurdle in adopting disaggregated memory, with
speed-of-light constraints making it impossible to improve
network latency beyond a point. Even with near-terabit links
and hardware-assisted protocols like RDMA [10], remote
memory accesses are an order of magnitude slower than lo-
cal memory accesses [65]. Emerging CXL interconnects [24]
share a similar trend— around 300 ns of CXLmemory latency
compared to 10–20 ns of L3 cache latency [101]. Although
efficient caching strategies at the CPU node can reduce aver-
age memory access latency and volume of network traffic
to remote memory, the benefit of such strategies is limited
by data locality and the size of the cache on the CPU node.
In many cases, remote memory accesses are unavoidable,
especially for applications that rely on efficient in-memory
pointer traversals on linked data structures, such as lookups
on index structures [31, 32, 38, 48, 49, 53, 75, 89, 106, 109, 161]
in databases and key-value stores, and traversals in graph
analytics [67, 68, 97, 118] (Fig. 2, §2).
Similar to how CPUs have small but fast memory (i.e.,

caches) for quick access to popular data, we argue that mem-
ory nodes should also include lightweight but fast process-
ing units with high-bandwidth, low-latency access to mem-
ory to speed up pointer-traversals (Fig. 1 (bottom)). More-
over, the interconnect should facilitate efficient and scal-
able distributed traversals for deployments with multiple
memory nodes that cater to large-scale linked data struc-
tures. Prior works have explored systems and API designs
for such processing units under multiple settings, ranging

1Not to be confused with die-stacked hardware DRAM caches [80, 81, 157].

https://doi.org/10.1145/3669940.3707253
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707253

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

CPU

DRAM
DRAM

used as
cache

PULSE

CPU
DRAM

DRAM

DRAM
used as
cache PU

LS
E PULSE

…

Low-latency, High-bandwidth

High-latency, Low-bandwidth

CPU Nodes
Memory Nodes

…

DRAM

Fig. 1. Need for accelerating pointer traversals. (top) The per-
formance of pointer traversals in disaggregated architectures is
bottlenecked by slow memory interconnect. (bottom) Just as caches
offer limited but fast memory near CPUs, we argue that memory
needs a counterpart for traversal-heavy workloads: a lightweight
but fast accelerator for cache-unfriendly pointer traversals.

from near-memory processing and processing-in-memory
approaches [40, 47, 52, 56, 57, 59–62, 66, 73, 76, 86, 87, 90, 96,
105, 110, 111, 115, 116, 128, 129, 136, 142, 148, 149, 151, 152]
for single-server architectures, to the use of CPUs [51, 94, 113,
127, 156, 162] or FPGAs [74, 135] near remote/disaggregated
memory, but have several key shortcomings.
Specifically, existing approaches are limited in scale and

expose a three-way tradeoff between expressiveness, energy
efficiency, and performance. First, and perhapsmost crucially,
none of the existing approaches can accelerate pointer tra-
versals that span multiple network-attached memory nodes.

This limits memory utilization and elasticity since appli-
cations must confine their data to a single memory node
to accelerate pointer traversals. Their inability to support
distributed pointer traversals stems from complex manage-
ment of address translation state that is required to identify
if a traversal can occur locally or must be re-routed to a
different memory node (§2.2). Second, existing single-node
approaches use full-fledged CPUs for expressive and perfor-
mant execution of pointer-traversals [51, 94, 127, 156]. How-
ever, coupling large amounts of processing capacity with
memory — which has utility in reducing data movement
in PIM architectures [40, 47, 59, 61, 62, 105, 110, 111, 116,
128, 142, 148, 151] — goes against the very spirit of memory
disaggregation since it leads to poor utilization of compute
resources and, consequently, poor energy efficiency.

Approaches that use wimpy processors at SmartNICs [43,
120] instead of CPUs retain expressiveness, but the lim-
ited processing speeds of wimpy nodes curtail their per-
formance and, ultimately lead to lower energy efficiency
due to their lengthened executions (§6.1, [74]). Lastly, FPGA-
based [74, 135, 138] and ASIC-based [76, 90] approaches
achieve performance and energy efficiency by hard-wiring
pointer traversal logic for specific data structures, limiting
their expressiveness.
We design pulse2, a distributed pointer-traversal frame-

work for rack-scale disaggregated memory, to meet all of
2Processing Unit for Linked StructurEs.

the above needs — namely, expressiveness, energy effi-
ciency, performance — via a principled redesign of near-
memory processing for disaggregated memory. Central
to pulse’s design is an expressive iterator interface that
readily lends itself to a unifying abstraction across most
pointer traversals in linked data structures used in key-value
stores [30, 121], databases [49, 53, 75, 108, 109], and big-data
analytics [67, 68, 97, 118] (§3). pulse’s use of this abstraction
not only makes it immediately useful in this large family
of real-world traversal-heavy use cases, but also enables (i)
the use of familiar compiler toolchains to support these use
cases with little to no application modifications and (ii) the
design of tractable hardware accelerators and efficient dis-
tributed traversal mechanisms that exploit properties unique
to iterator abstractions.

In particular, pulse enables transparent and efficient exe-
cution of pointer traversals for our iterator abstraction via a
novel accelerator that employs a disaggregated architecture
to decouple logic and memory pipelines, exploiting the in-
herently sequential nature of compute and memory accesses
in iterator execution (§4). This permits high utilization by
provisioning more memory and fewer logic pipelines to cater
to memory-centric pointer traversal workloads. A scheduler
breaks pointer traversal logic frommultiple concurrent work-
loads across the two sets of pipelines and employs a novel
multiplexing strategy to maximize their utilization. While
our implementation leverages an FPGA-based SmartNIC due
to the high cost and complexity of ASIC fabrication, our
ultimate vision is an ASIC-based realization for improved
performance and energy efficiency.
We enable distributed traversals by leveraging the in-

sight that pointer traversal across network-attached mem-
ory nodes is equivalent to packet routing at the network
switch (§5). As such, pulse leverages a programmable net-
work switch to inspect the next pointer to be traversedwithin
iterator requests and determine the next memory node to
which the request should be forwarded — both at line rate.

We implement a real-system prototype of pulse on a dis-
aggregated rack of commodity servers, SmartNICs, and a pro-
grammable switch with full-system effects. None of pulse’s
hardware or software changes are invasive or overly com-
plex, ensuring deployability. Our evaluation of end-to-end
real-world workloads shows that pulse outperforms disag-
gregated caching systems with 9–34× lower latency and
28–171× higher throughput. Moreover, our Xilinx XRT [37]
and Intel RAPL [78]-based power analysis shows that pulse
consumes 4.5–5× less energy than RPC-based schemes (§6).

2 Motivation and pulse Overview
2.1 Need for Accelerating Pointer Traversals
Memory-intensive applications [35, 50, 54, 112, 133, 154, 160]
often require traversing linked structures like lists, hash ta-
bles, trees, and graphs. While disaggregated architectures

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0

100
WebService (Zipfian) WiredTiger (Zipfian) BTrDB (Zipfian)

1 1/2 1/4 1/8 1/16
0

100
WebService (Uniform)

1 1/2 1/4 1/8 1/16

WiredTiger (Uniform)

1 1/2 1/4 1/8 1/16

BTrDB (Uniform)

5

10

15

5

10

15

P
er

ce
nt

ag
e

of
ex

ec
ut

io
n

ti
m

e
(%

)

S
lo

w
do

w
n

(N
or

m
al

iz
ed

to
1)

Local Memory Capacity : Working Set Size

Non Ptr-Traversal Ptr-Traversal Normalized Execution Time

(a) Our empirical analysis

WiredTiger BTrDB
Application

0%

25%

50%

75%

100%

P
er

ce
nt

ag
e

of
re

qu
es

ts
w

it
h

p
oi

nt
er

tr
av

er
sa

l

1GB 2MB 4KB

(b) % of distributed traversals

0 10 20 30
No. of Node Crossing

0

25

50

75

100

P
er

ce
nt

ag
e

of
re

qu
es

ts

WiredTiger-1GB

WiredTiger-2MB

WiredTiger-4KB

BTrDB-1GB

BTrDB-2MB

BTrDB-4KB

(c) CDF of distributed traversals

Fig. 2. Time cloud applications spend in pointer traversals. See §2.1 for details.

provide large memory pools across network-attached mem-
ory nodes, traversing pointers over the network is still
slow [65]. Recent proposals [42, 65, 72, 100, 130] alleviate this
slowdown by using the DRAM at the CPU nodes to cache
“hot” data, but such caches often fare poorly for pointer tra-
versals, as we show next.
Pointer traversals in real-world workloads. Prior stud-
ies [30, 34, 63, 77, 97, 158, 160] have shown that real-world
data-centric cloud applications spend anywhere from 21% to
97% of execution time traversing pointers. We empirically
analyze the time spent in pointer traversals for three repre-
sentative cloud applications — a WebService frontend [127],
indexing on WiredTiger [108], and time-series analysis on
BTrDB [45] — with swap-based disaggregated memory [72]3.
We vary the cache size at the CPU node from 6.25%-100% of
each application’s working set size. Fig. 2(a) shows that (i) all
three applications spend a significant fraction of their execu-
tion time (13.6%, 63.7%, and 55.8%, respectively) traversing
pointers even when their entire working set is cached, and
(ii) the time spent traversing pointers (and thus, the end-
to-end execution time) increases with smaller CPU node
caches. While the impact of access skew is application-
dependent, pointer traversals dominate application execu-
tion times when more of the application’s working set size
is remote.
Distributed traversals. As the number of applications and
the working-set size per application grows larger, disaggre-
gated architectures must allocate memory across multiple
memory nodes to keep up. Such approaches [42, 72, 100, 130]
tend to strive for the smallest viable allocation granularity
with reasonable metadata overheads (e.g., 1 GB in [130], 2
MB in [100]) since smaller allocations permit better load
balancing and high memory utilization. Unfortunately, finer-
grained allocations may cause an application’s linked struc-
tures to get fragmented across multiple network-attached
memory nodes, necessitating many distributed traversals.

3We defer the details of the data structures and workloads employed by
these applications, as well as the disaggregated memory setup to §6.

Fig. 2(b) illustrates this impact on a setup with 1 com-
pute and 4 memory nodes: even with large 1 GB allocations,
WiredTiger and BTrDB require over 97% and 75% of their
requests, respectively, to cross memory node boundaries at
least once, with the volume of cross-node traffic increasing
at smaller granularities. Fig. 2(c) shows the CDF of requests
that require a certain number of memory node crossings.
While the randomly ordered data in WiredTiger necessitate
many cross-node traversals even for large allocations, the
time-ordered data in BTrDB reduce cross-node traversals
for larger allocation granularities by confining large time
windows to the same memory node. However, smaller to
moderate allocation granularities — required for high mem-
ory utilization — still require many cross-node traversals.

2.2 Shortcomings of Prior Approaches
No prior work achieves all four properties required for
pointer traversals on disaggregated memory: distributed ex-
ecution, expressiveness, energy efficiency, and performance.
We focus on network-attached memory, although a similar
analysis extends to in-memory processing [40, 47, 52, 56, 57,
59–62, 66, 73, 76, 86, 87, 90, 96, 105, 110, 111, 115, 116, 128,
129, 136, 142, 148, 149, 151, 152].
No support for distributed execution.Distributed pointer
traversals are required to ensure applications can efficiently
access large pools of network-attached memory nodes. Un-
fortunately, to our knowledge, none of the prior works sup-
port efficient multi-node pointer traversals. Therefore, ap-
plications must confine their data to a single node for ef-
ficient traversals, exposing a tradeoff between application
performance and scalability. Recent proposals [44, 104, 107,
131, 132, 141, 146] explore specialized data structures that
co-design partitioning and allocation policies to reduce dis-
tributed pointer traversals atop disaggregated memory. Such
approaches complement our work since they still require
efficient distributed traversals when their optimizations are
not applicable, e.g., not many data structures benefit from
such specialized co-designs.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

Applications
…

Data Structure Library
using PULSE Iterators

!

Lib

Application
Developer

!

PULSE
ISA

Translated
ISA Instructions

CPU
Node

CPU
Node

…

Memory
Node

…

PULSE Accelerator

Memory …

"

Code/
meta …

Memory

!

Source
+

(§4.1)

(§3)

(§4.2)

Network
Distributed
Continuation

Data Structure
Developer

(§5)

Memory
Node

✉

Code w/ computation limit

✉✉ "

Code/
meta

Dispatch
Engine

Fig. 3. pulse Overview. Developers use pulse’s iterator interface (§3) to express pointer traversals, translated to pulse ISA by its dispatch
engine (§4.1). During execution, pulse accelerator ensures energy efficiency (§4.2) and in-network design enable distributed traversals (§5).

Poor performance with prefetching approaches. Cache-
based designs for remote memory often employ prefetching
techniques [41, 103, 155] that pipeline remote memory ac-
cess with computations at the CPU nodes. Unfortunately,
such pipelining does not improve performance for pointer
traversal workloads for two main reasons. First, the remote
memory access latency is typically far greater than the com-
putation required for pointer traversals, so network round
trips to prefetch the data would remain the bottleneck. Sec-
ond, speculating the next unit of data to prefetch for more
complex data structures like B+Trees or graphs, where each
node contains pointers to many “children” nodes, tends to
have much lower accuracy in practice. As such, prefetching
can even add overheads due to unnecessary data fetches.
Poor utilization/power-efficiency in CPUs. Many prior
works have explored remote procedure calls (RPCs) to en-
able offloading computation to CPUs on memory nodes [51,
94, 113, 127, 156]. While CPUs are performant and ver-
satile enough to support most general-purpose computa-
tions, the same versatility makes them overkill for pointer
traversal workloads in disaggregated architectures — the
CPUs on memory nodes are likely to be underutilized and,
consequently, waste energy (§6), since such workloads are
memory-intensive and bounded by memory bandwidth
rather than CPU cycles.

Since inefficient power usage resulting from coupled com-
pute and memory resources is the main problem disaggre-
gation aims to resolve, leveraging CPUs at memory nodes
essentially nullifies these benefits.
Limited expressiveness in FPGA/ASIC accelerators. An-
other approach explored in recent years uses FPGAs [74, 135]
or ASICs [76, 90] at memory nodes for performance and en-
ergy efficiency. FPGA approaches exploit circuit programma-
bility to realize performant on-path data processing, albeit
only for specific data structures, limiting their expressiveness.
Although some FPGA approaches aim for greater expressive-
ness by serving RPCs [92], RPC logic must be pre-compiled
before it is deployed and physically consumes FPGA re-
sources. This limits how many RPCs can be deployed on
the FPGA concurrently and also elides runtime resource
elasticity for different pointer traversal workloads. ASIC ap-
proaches either support a single data structure or provide

limited ISA specialized for a single data structure (e.g., linked-
lists [90]), limiting their general applicability.
Poor performance/power efficiency in wimpy Smart-
NICs. The emergence of programmable SmartNICs has
driven work on offloading computations to the onboard net-
work processors. Some approaches utilize wimpy processors
(e.g., ARM or RISC-V processors) [43] or RDMA processing
units (PUs) [120] to support general-purpose computations
near memory. While these wimpy processors can eliminate
multiple network round trips in pointer traversal workloads,
their processing speeds are far slower than CPU-based or
FPGA-based accelerators. Often, such PUs can become a
performance bottleneck, especially at high memory band-
width (∼500 Gbps) [65, 120]. Moreover, wimpy processors
tend not to be energy-efficient since their slower execution
tends to waste more static power, resulting in higher energy
per pointer traversal offload — an observation noted in prior
work [74] and confirmed in our evaluation (§6).

2.3 pulse Design Overview
pulse innovates on three key design elements (Fig. 3). Central
to pulse’s design is its iterator-based programming model
(§3) that requires minimal effort to port real-world data struc-
ture traversals. pulse supports stateful traversals using a
scratchpad of pre-configured size, where developers can store
and update arbitrary intermediate states (e.g., aggregators,
arrays, lists, etc.) during the iterator’s execution. Proper-
ties specific to iterator patterns enable tractable accelerator
design and efficient distributed traversals in pulse.

The iterator code provided by the data structure developer
is translated into pulse’s instruction set architecture (ISA) to
be executed by pulse accelerators (§4). pulse achieves energy
efficiency and performance through a novel accelerator that
employs disaggregated logic and memory pipelines and an
ISA specifically designed for the iterator pattern. Our accel-
erator employs a scheduler specialized for its disaggregated
architecture to ensure high utilization and performance.
pulse supports scalable distributed pointer traversals by

leveraging programmable network switches to reroute any
requests that must cross memory node boundaries (§5).
pulse employs hierarchical address translation in the net-
work, where memory node-level address translation is per-
formed at the switch (i.e., a request is routed to the memory

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

node based on its target address), and thememory node accel-
erator performs translation and protection for local accesses.
During traversal, a memory node accelerator can return a
request to the switch if it determines the address is not local;
the switch re-routes the request to the correct memory node.
Assumptions. pulse does not offload synchronization to its
accelerators but instead requires the application logic at the
CPU node to explicitly acquire/release appropriate locks for
the offloaded operation. Recent efforts enable locking primi-
tives on NICs [141, 146] and programmable switches [159];
these are orthogonal to our work and can be incorporated
into pulse. Finally, pulse does not innovate on caching and
adapts the caching scheme from prior work [127], which
maintains a transparent cache within the data structure li-
brary.

3 pulse Programming Model
We begin with pulse’s programming model since a carefully
crafted interface is crucial to enable wide applicability for
real-world traversal-heavy applications, as well as the design
of tractable pointer traversal accelerators and efficient dis-
tributed traversal mechanisms. pulse’s interface is intended
for data structure library developers to offload pointer traver-
sals in linked data structures. Since pulse code modifications
are restricted to data structure libraries, existing applications
utilizing their interfaces require no modifications.

We analyzed the implementations of a wide range of pop-
ular data structures [2, 15, 16, 28] to determine the structures
common to them in pointer traversals. We found that most
traversals (1) initialize a start pointer using data structure-
specific logic, (2) iteratively use data structure-specific logic
to determine the next pointer to look up, and (3) check a
data structure-specific termination condition at the end of
each iteration to determine if the traversal should end. This
structure resembles that of the iterator design pattern, estab-
lishing its universality as a design motif common to almost
all languages [28]. This is precisely what makes it an ideal
candidate for the interface between the hardware and soft-
ware layers for pointer traversals. As such, pulse allows
developers to program their data structure traversals using
the iterator interface shown in Listing 1.

The interface exposes three functions that must be imple-
mented by the user: (1) init(), which takes as input arbitrary
data structure-specific state to initialize the start pointer, (2)
next(), that updates the current pointer to the next pointer
it must traverse to, and, (3) end(), that determines if the
pointer traversal should end (either in success or failure)
based on the current pointer. pulse then uses the provided
implementations for these functions to execute the pointer
traversal iteratively, using the execute() function. We dis-
cuss two key novel aspects of our iterator abstraction that
were necessary to increase and limit the expressiveness of
operations on linked data structures.

1 class pulse_iterator {
2 void init(void *) = 0; // Implemented by developer
3 void *next() = 0; // Implemented by developer
4 bool end() = 0; // Implemented by developer
5

6 unsigned char *execute() { // Non-modifiable logic
7 unsigned int num_iter = 0;
8 while (!end() && num_iter++ < MAX_ITER)
9 cur_ptr = next();
10 return scratch_pad;
11 }
12 uintptr_t cur_ptr;
13 unsigned char scratch_pad[MAX_SCRATCHPAD_SIZE];
14 }

Listing 1. pulse interface.

Stateful traversals. Pointer traversals in many data struc-
tures are stateful, and the nature of the state can vary widely.
For instance, in hash table lookups, the state is the search key
that must be compared against a linked list of keys in a hash
bucket. In contrast, summing up values across a range of
keys in a B-Tree requires maintaining a running variable for
storing the sum and updating it for each value encountered
in the range. To facilitate this, pulse iterators maintain a
scratch_pad that the developer can use to store an arbitrary
state. The scratch_pad acts as a continuation [123] in the
programming language sense, allowing the state to persist
across iterations. It is initialized in init(), updated in next(),
and finalized in end(). Since execute() in pulse’s iterator
interface returns the contents of scratch_pad (Line 10), de-
velopers can place the state they want to retrieve in it.
Bounded computations. pulse accelerators support only
lightweight processing in memory-intensive operations for
high memory bandwidth utilization. While init() is exe-
cuted on the CPU node, next() and end() are offloaded to
pulse accelerators; hence, pulse limits what memory ac-
cesses and computations can be performed in them in two
ways. Within each iteration, pulse disallows nondetermin-
istic executions, such as unbounded loops, i.e., loops that
cannot be unrolled to a fixed number of instructions. Across
iterations, execute() in Listing 1 limits the maximum num-
ber of iterations that a single request is allowed to perform.
This ensures that a particularly long traversal does not block
other requests for a long time.
If a request exceeds the maximum iteration count, pulse

terminates the traversal and returns the scratch_pad value
to the CPU node, which can issue a new request to continue
the traversal from that point.
An illustrative example. We demonstrate how the find()
operation on C++ STL unordered_map can be ported to pulse.
Listing 2 shows a simplified version of its implementation
in STL — the pointer traversal begins by computing a hash
function and determining a pointer to the hash bucket cor-
responding to the hash. It then iterates through a linked list

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

1 struct node {
2 key_type key;
3 value_type value;
4 struct node *next;
5 };
6

7 value_type find(key_type key) {
8 for (struct node *cur_ptr = bucket_ptr(hash(key));

; cur_ptr = cur_ptr->next) {
9 if (key == cur_ptr->key) // Key found
10 return cur_ptr->value;
11 if (cur_ptr->next == nullptr) // Key not found
12 break;
13 }
14 return KEY_NOT_FOUND;
15 }

Listing 2. C++ STL realization for unordered_map::find().

1 class unordered_map_find : pulse_iterator {
2 init(void *key) {
3 memcpy(scratch_pad, key, sizeof(key_type));
4 cur_ptr = bucket_ptr(hash((key_type)*key));
5 }
6

7 void* next() { return cur_ptr->next; }
8

9 bool end() {
10 key_type key = *((key_type *)scratch_pad);
11 if (key == cur_ptr->key) { // Key found
12 *((value_type *)scratch_pad) = cur_ptr->value;
13 return true;
14 }
15 if (cur_ptr->next == nullptr) { // Key not found
16 *((unsigned int *)scratch_pad) = KEY_NOT_FOUND;
17 return true;
18 }
19 return false;
20 }
21 }

Listing 3. pulse realization for unordered_map::find().

corresponding to the hash bucket, terminating if the key is
found or the linked list ends without it being found.
Listing 3 shows the corresponding iterator implementa-

tion in pulse. Much of the implementation is unchanged,
with minor restructuring for init(), next(), and end() func-
tions. The main changes are — how the state (the search key)
is exchanged across the three functions and how the data
is returned back to the user via the scratch_pad (an error
message if the key is not found, or its value if it is).
Ported Data Structures. While the pulse programming
model applies to various programming languages that sup-
port iterator interfaces, we have restricted our focus to C++
data structure libraries due to their widespread use. We have
applied the pulse programming model to 13 commonly-used
data structures found in popular libraries such as STL [16],
Boost [2], and Google Btree [7] (Table 1); we defer a compre-
hensive description of their details to [139].

4 Accelerating Pointer Traversals on a Node
4.1 pulse Dispatch Engine
The dispatch engine is a software framework running at the
CPU node for two purposes. First, it translates the iterator
realization for pointer traversal provided by a data structure
library developer (§3) into pulse’s ISA. Second, it determines
if the accelerator can support the computations performed
during the traversal, and if so, ships a request to the acceler-
ator at the memory node. If not, the execution proceeds at
the CPU node with regular remote memory accesses.
Translating iterator code to pulse ISA. To be readily im-
plementable, pulse plugs into existing compiler toolchains.
The dispatch engine generates pulse ISA instructions using
widely known compiler techniques [33]. pulse’s ISA is a
stripped-down RISC ISA, only containing operations nec-
essary for basic processing and memory accesses to enable
a simple and energy-efficient accelerator design (Table 2).
There are, however, a few notable aspects to our adapted ISA
and the translation of iterator code to it. First, as noted in §3,
pulse does not support unbounded loops within a single iter-
ation, i.e., the ISA only supports conditional jumps to points
ahead in code. This is similar to eBPF programs [124], where
only forward jumps are supported to prevent the program
from running infinitely within the kernel. A backward jump
can only occur when the next iteration starts; pulse employs
a special NEXT_ITER instruction to explicitly mark this point
so that the accelerator can begin scheduling the memory
pipeline (§4.2). Second, again as noted in §3, developers can
maintain state and return values using a scratch_pad of pre-
configured size; our ISA supports register operations directly
on the scratch_pad and provides special RETURN instruction
that simply terminates the iterator execution and yields the
contents of the scratch_pad as the return value. Lastly, if
the code cannot be compiled to the PULSE ISA — e.g., if it in-
volves compute-heavy or non-memory-centric tasks — it will
not be offloaded to the accelerator. Instead, such code will
run on the CPU, potentially accessing memory remotely over
the network (e.g., via RDMA or CXL). This design ensures
that only tasks that benefit from near-memory execution
are offloaded, adhering to our design philosophy of only
offloading memory-bound operations.
Finally, we found that the iterator traversal pattern typi-

cally can be broken down into two types of computation —
fetching data4 pointed to by cur_ptr from memory, and
processing the fetched data to determine what the next
pointer should be, or if the iterator execution should ter-
minate. If the translation from the iterator code to pulse’s
ISA is done naively, it can result in multiple unnecessary
loads within the vicinity of the memory location pointed to

4While the rest of the section focuses only on describing data fetches from
memory, we note that writing data to memory proceeds similarly.

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Library Data Structures

STL List [19], Forward list [18], Map [20], Multimap [21],
Set [23], Multiset [22]

Boost Bimap [14], Unordered map [5], Unordered set [6]
AVL tree [1], Splay tree [3], Scapegoat tree [4],

Google Btree [7]
Table 1. Data structures implemented in pulse (§3).

Class Instructions Description

Memory LOAD, STORE Load/store data
from/to address.

ALU ADD, SUB, MUL, DIV,
AND, OR, NOT Standard ALU operations.

Register MOVE Move data b/w registers.

Branch COMPARE and
JUMP_{EQ, NEQ, LT, ...}

Compare values & jump
ahead based on condition
(e.g., equal, less than, etc.).

Terminal RETURN, NEXT_ITER End traversal & return,
or start next iteration.

Table 2. pulse adapts a restricted subset of RISC-V ISA (§4.1).

by cur_ptr. For instance, the unordered_map::find() real-
ization shown in Listing 3makes references to cur_ptr->key,
cur_ptr->value, and cur_ptr->next at various points, and
if each incurs a separate load, it will slow down execution
and waste memory bandwidth. Consequently, pulse’s dis-
patch engine infers the range of memory locations accessed
relative to cur_ptr in the next() and end() functions via
static analysis and aggregates these accesses into a single
large LOAD (of up to 256 B) at the beginning of each iteration.
Bounding complexity of offloaded code.While pulse’s
interface and ISA already limit the types of computation than
can be performed per iteration, pulse also needs to limit the
amount of computation per iteration to ensure the operations
offloaded to pulse accelerators remain memory-centric. To
this end, pulse’s dispatch engine analyzes the generated ISA
for the iterator to determine the time required to execute
computational logic (𝑡𝑐) and the time required to perform the
single data load at the beginning of the iteration (𝑡𝑑). pulse
exploits the known execution time of its accelerators in terms
of time per compute instruction, 𝑡𝑖 , to determine 𝑡𝑐 = 𝑡𝑖 · 𝑁 ,
where𝑁 is the number of instructions per iteration. The CPU
node offloads the iterator execution only if 𝑡𝑐 ≤ 𝜂 · 𝑡𝑑 , where
𝜂 is a predefined accelerator-specific threshold. Note that
since we only want to offload memory-centric operations,
𝜂 ≤ 1. As we will show in §4.2, the choice of 𝜂 allows pulse
to maximize the memory bandwidth utilization and ensure
processing never becomes a bottleneck for pointer traversals.
Issuing network requests to accelerator. Once the dis-
patch engine decides to offload an iterator execution, it en-
capsulates the ISA instructions (code) along with the initial
value of cur_ptr and scratch_pad (initialized by init())
into a network request. It issues the request, leaving the

network to determine which memory node it should be for-
warded to (§5). To recover from packet drops, the dispatch
engine embeds a request ID with the CPU node ID and a local
request counter in the request packets, maintains a timer per
request, and transparently retransmits requests on timeout.
Practical deployability. Our software stack is readily de-
ployable due to its use of real-world toolchains. Our user
library adapts implementations of common data structures
used in key-value stores [30, 121], databases [49, 53, 75, 108,
109], and big-data analytics [67, 68, 97, 118] to pulse’s itera-
tor interface (§3). pulse’s dispatch engine is implemented on
Intel DPDK-based [26] low-latency, high-throughput UDP
stack. pulse compiler adapts the Sparc backend of LLVM [98]
since its ISA is close to pulse’s ISA. Our LLVM frontend ap-
plies a set of analysis and optimization passes [29] to enforce
pulse constraints and semantics: the analysis pass identifies
code snippets that require offloading, while the optimization
pass translates pointer traversal code to pulse ISA.

4.2 pulse Accelerator Design
The accelerator is at the heart of pulse design and is key
to ensuring high performance for iterator executions with
high resource and energy efficiency. Our motivation for a
new accelerator design stems from two unique properties of
iterator executions on linked structures:

• Property 1: Each iteration involves two clearly separated
but sequentially dependent steps: (i) fetching data from
memory via a pointer (e.g., a list or tree node), followed by
(ii) executing logic on the fetched data to identify the next
pointer. The logic cannot be executed concurrently with
or before the data fetch, and the next data fetch cannot be
performed until the logic execution yields the next pointer.

• Property 2: Iterators that benefit from offload spend more
time in data fetch (𝑡𝑑) than logic execution (𝑡𝑐), i.e., 𝑡𝑐 <

𝜂 · 𝑡𝑑 , where 𝜂 ≤ 1, as noted in §4.1.

Any accelerator for iterator executions must have a memory
pipeline and a logic pipeline to support the execution steps
(i) and (ii) above. The strict dependency between the steps
(Property 1) renders many optimizations of traditional multi-
core processors, such as out-of-order execution, ineffective.
Moreover, since each core in such architectures has tightly
coupled logic and memory pipelines, the memory-intensive
nature of iterators (Property 2) results in the logic pipeline
remaining idle most of the time. These two factors combined
result in poor utilization and energy efficiency for such ar-
chitectures. Fig. 4 (top) captures this through the execution
of 3 iterators (A, B, C), each with 2 iterations (e.g., A1, A2,
etc.), on a multi-core architecture. Since each iteration com-
prises a data fetch followed by a dependent logic execution,
one of the pipelines remains idle while the other is busy.
While thread-level parallelism permits iterator requests to

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

M
ul

ti-
co

re #1 L M

#2 L M

L
M

M

A1
A1 A2

A2

B1
B1 B2

B2

A1

A1

C1

A2B1

B2

B1 C1 A2 B2
C2

C2

0 1 2 3 4 5 6 7 8 9 10

C1
C1

C2
C2

11 12
P

U
LS

E

Workload: B, Iteration: 2

L MLogic pipeline Memory pipeline Scheduler

td tc

Fig. 4. pulse accelerator architecture. (top) Traditional multi-
core architectures with tightly coupled logic and memory pipelines
result in low utilization and longer execution times. (bottom) pulse
accelerator’s disaggregated design with an unequal number of logic
andmemory pipelines efficiently multiplexes concurrent iterator ex-
ecutions across them for near-optimal utilization and performance.

be spread across multiple cores for increased overall through-
put, per-core under-utilization of logic andmemory pipelines
persists, resulting in suboptimal resource and energy usage.
Disaggregated accelerator design. Motivated by the
unique properties of iterators, we propose a novel accelerator
architecture that disaggregates memory and logic pipelines,
using a scheduler to multiplex corresponding components
of iterators across them. First, such a decoupling permits
an asymmetric number of logic and memory pipelines to
maximize the utilization of either pipeline, in stark contrast
to the tight coupling in multi-core architectures. In our de-
sign, if there are𝑚 logic and 𝑛 memory pipelines, then the
accelerator-specific threshold 𝜂 < 1 we alluded to in §4.1 is
𝑚
𝑛
, i.e., there are fewer logic pipelines than memory pipelines

in keeping with Property 2. Fig. 4 (bottom) shows an exam-
ple of our disaggregated accelerator design with one logic
pipeline and two memory pipelines (i.e.,𝑚 = 1, 𝑛 = 2).
Even though data fetch and logic execution within each

iterator must be sequential, the disaggregated design per-
mits efficient multiplexing of data fetch and logic execution
from different iterators across the disaggregated logic and
memory pipelines to maximize utilization. To see how, recall
that the logic execution time 𝑡𝑐 for each offloaded iterator
execution in pulse is ≤ 𝜂 · 𝑡𝑑 , where 𝑡𝑑 is its data fetch time
(§4.1). Consider the extreme case where 𝑡𝑐 = 𝜂 · 𝑡𝑑 for all
offloaded iterator executions — in this case, it is always pos-
sible to multiplex𝑚 + 𝑛 concurrent iterator executions to
fully utilize all𝑚 logic and 𝑛 memory pipelines. While we
omit a theoretical proof for brevity, Fig. 4 (bottom) illustrates
the multiplexed execution — orchestrated by a scheduler in
our accelerator — for 𝑡𝑐 = 1

2 · 𝑡𝑑 with 3 iterators. This is the
ideal case — similar multiplexing is still possible if 𝑡𝑐 ≤ 𝜂 · 𝑡𝑑
with complete utilization of memory pipelines, albeit with
lower utilization of logic pipelines (since they will be idle
for 𝑡𝑐−𝜂 ·𝑡𝑑

𝑡𝑐
fraction of time). As such, we provision 𝜂 = 𝑚

𝑛
to

be as close to the expected 𝑡𝑐
𝑡𝑑

for the workload to maximize
the utilization of logic pipelines. It is possible to improve

Memory Pipeline #1

…

Workspace #1
scratch_pa

d
cur_ptrcur_nod

e

Workspace #(n+m-1)
scratch_pa

d
cur_ptrcur_nod

e

Workspace #2

scratch_pad cur_ptr
code

Workspace #(n+m)

scratch_pad cur_ptr
code

…

Logic Pipeline #1

DD
R4

10
0

G
bp

s
N

et
w

or
k

S
ta

ck

QS
FP

28

Logic Pipeline #m

Memory Pipeline #n
…

P
ac

ke
t b

uf
fe

r

S
ch

ed
ul

er

In
te

rc
on

ne
ct

Fig. 5. pulse accelerator overview. See §4.2 for details.

the logic pipelines’ energy efficiency by dynamically down-
scaling frequency [93]; we leave such optimizations to future
work.

While the memory pipeline is stateless, the logic pipeline
must maintain the state for the iterator it executes. To multi-
plex several iterator executions, logic pipelines need efficient
mechanisms for efficient context switching. To this end, we
maintain a dedicated workspace corresponding to each itera-
tor’s execution. Each workspace stores three distinct pieces
of state: cur_ptr and scratch_pad to track the iterator state
described in §3, and data, which holds the data loaded from
memory for cur_ptr. A dedicated workspace per iterator al-
lows the logic pipeline to switch to any iterator’s execution
without delay when triggered by the scheduler, although it
requires maintaining multiple workspaces — a maximum
of𝑚 + 𝑛 to accommodate any possible schedule due to our
bound on the number of concurrent iterators. We divide
these workspaces equally across logic pipelines.
Memory pipeline: Each memory pipeline loads data from the
attached DRAM to the corresponding workspace assigned
by the scheduler at the start of each iteration. This involves
(i) address translation and (ii) memory protection based on
page access permissions. We realize range-based address
translations (simulated in prior work [64]) in our real-world
implementation using TCAM to reduce on-chip storage us-
age.

Once a memory access is complete, the memory pipeline
signals the scheduler to continue the iterator execution or
terminate it if there is a translation or protection failure.
Logic pipeline: Each logic pipeline runs pulse ISA instruc-
tions other than LOAD/STORE to determine the cur_ptr value
for the next iteration or, to determine if the termination con-
dition has been met. Our logic pipeline comprises an ALU
to execute the standard arithmetic and logic instructions, as
well as modules to support register manipulation, branching,
and the specialized RETURN instruction execution (Table 2).
During a particular iterator’s execution, the logic pipeline
performs its corresponding instructions with direct reads and
updates to its dedicated workspace registers. An iteration’s
logic can end in one of two possible ways: (i) the cur_ptr has
been updated to the next pointer, and the NEXT_ITER instruc-
tion is reached, or (ii) the pointer traversal is complete, and
the RETURN instruction is reached. In either case, the logic
pipeline notifies the scheduler with the appropriate signal.

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Scheduler: The scheduler handles new iterator requests re-
ceived over the network and schedules each iterator’s data
fetch and logic execution across memory and logic pipelines:

1. On receiving a new request over the network, it assigns
the iterator an empty workspace at a logic pipeline and
signals one of the memory pipelines to execute the data
fetch from memory based on the state in the workspace.

2. On receiving a signal from the memory pipeline that a
data fetch has successfully completed, it notifies the ap-
propriate logic pipeline to continue iterator execution via
the corresponding workspace.

3. On receiving a signal from the logic pipeline that the next
iteration can be started (via the NEXT_ITER instruction), it
notifies one of the memory pipelines to execute LOAD via
the corresponding workspace.

4. When it receives a signal from the memory pipeline that
an address translation or memory protection failed or a
signal from the logic pipeline that the iterator execution
has met its terminal condition (via the RETURN instruc-
tion), it signals the network stack to prepare a response
containing the iterator code, cur_ptr and scratch_pad.

While the scheduler assigns memory and logic pipelines
to an iterator in steps 1 and 3 in a manner that maximizes
utilization of all memory pipelines (i.e., Fig. 4 (bottom)), it is
possible to implement other scheduling policies.
Network Stack: The network stack receives and transmits
packets; when a new request arrives, it parses/deparses the
payload to extract/embed the request ID, code, and state for
the offloaded iterator execution (cur_ptr, scratch_pad).

The network stack uses the same format for both requests
and responses, so a response can be sent back to the CPU
node on traversal completion or rerouted as a request to a
different memory node for continued execution (§5).
Implementation.We use an FPGA-based NIC (Xilinx Alveo
U250) with two 100 Gbps ports, 64 GB on-board DRAM,
1,728K LUTs, and 70 Mb BRAM. Since the board has two
Ethernet ports and four memory channels, we partition its
resources into two pulse accelerators, each with a single
Ethernet port and two memory channels. Our analysis of
common data structures (§6) shows their 𝑡𝑐/𝑡𝑑 ratio tends
to be < 0.75. As such, we set 𝜂 = 0.75, i.e., there are four
memory and three logic pipelines and a total of 7workspaces
on the accelerator. We use the Xilinx TCAM IP [36] (for page
tables), 100 Gbps Ethernet IP, link-layer IPs [153], and burst
data transfers [8] to improve memory bandwidth. The logic
and memory pipelines are clocked at 250 MHz, while the
network stack operates at 322 MHz for 100 Gbps traffic. Our
FPGA prototype showcases pulse’s potential; we believe
that ASIC implementations are the next natural step.

VA 0x1000-0x1fff: P1

VA 0x0000-0x0fff: P0

… cur_ptr: 0x1001P1

P0

cur_ptr: 0x1001
Global Address Translation Table

(virtual address range, port)

Local Address Translation/
Protection Table

cur_ptr:

0x1001

Local
Memory

Memory

PULSE

12

3

4
5 6

Memory Node #2

CPU
Node Switch

Memory Node #1Remote

Fig. 6. Hierarchical translation & distributed traversal (§5).

5 Distributed Pointer Traversals
By restricting pointer traversals to a single memory node
(§2), prior approaches leave applications with two undesir-
able options. At one extreme, they can confine their data to
a single memory, but sacrifice application scalability. Con-
versely, they can spread their data across multiple nodes
but have to return the CPU node whenever the traversal
accesses a pointer on another memory node. This affords
scalability but costs additional network and software pro-
cessing latency at the CPU node. To avoid the cost, one may
replicate the entire translation and protection state for the
cluster at every memory node so they can directly forward
traversal requests to other memory nodes. This comes at the
cost of increased space consumption for translation, which
is challenging to contain within the accelerator’s transla-
tion and protection tables. Moreover, duplicating this state
across memory nodes requires complex protocols for ensur-
ing their consistency (e.g., when the state changes), which
have significant performance overheads.

pulse breaks this tradeoff between performance and scal-
ability by leveraging a programmable network switch to
support rack-scale distributed pointer traversals. In particu-
lar, if the pulse accelerator on one memory node detects that
the next pointer lies on a different memory node, it forwards
the request to the network switch, which routes it to the
appropriate memory node for continuing the traversal. This
cuts the network latency by half a round trip time and avoids
software overheads at the CPU node, instead performing the
routing logic in switch hardware. Since continuing the tra-
versal across memory nodes is similar to packet routing, the
switch hardware is already optimized to support it.

Enabling rack-scale pointer traversals, however, requires
addressing two key challenges, as we discuss next.
Hierarchical translation. For the switch to forward the
pointer traversal request to the appropriate memory node,
it must be able to locate which memory nodes are respon-
sible for which addresses. To minimize the logic and state
maintained at the switch due to its limited resources, pulse
employs hierarchical address translation as shown in Fig. 6.
In particular, the address space is range partitioned across
memory nodes; pulse only stores the base address to mem-
ory node mapping at the switch, while each memory node

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

stores its own local address translation and protection meta-
data at the accelerator (1○), as outlined in §4. The routing
logic at the switch inspects the cur_ptr field in the request
(2○) and consults its mapping to determine the target mem-
ory node (3○). At the memory node, the traversal proceeds
until the accessed pointer is not present in the local table
(as in 1○); it then sends the request back to the switch (§4.2),
which can re-route the request to the appropriate memory
node (4○- 6○), or notify the CPU node if the pointer is invalid.
Continuing stateful iterator execution. One challenge
of distributing iterator execution in pulse lies in its state-
ful nature: since pulse permits the storage of intermediate
state in the iterator’s scratch_pad, how can such stateful
iterator execution be continued on a different memory node?
Fortunately, our design choices of (i) confining all of the iter-
ator state in scratch_pad and cur_ptr and (ii) keeping the
request and response formats identical make this straightfor-
ward. The accelerator at the memory node simply embeds
the up-to-date scratch_pad within the response before for-
warding it to the switch; when the switch forwards it to the
next memory node, it can simply continue execution exactly
as it would have if the last memory node had the pointer.

6 Evaluation
Compared systems.We compare pulse against: (i) aCache-
based system that relies solely on caches at CPU nodes to
speed up remote memory accesses; we use Fastswap [42] as
the representative system, (ii) an RPC system that offloads
pointer-traversals to a CPU on memory nodes, (iii) RPC-
ARM, an RPC system that employs a wimpy ARM processors
at memory nodes, and (iv) a Cache+RPC approach that
employs data structure-aware caches; we use AIFM [127] as
the representative system. (i) and (iv) use a cache size of 2GB,
while (ii) and (iii) use a DPDK-based RPC framework [84].
Our experimental setup comprises two servers, one for
the CPU node and the other for memory nodes, connected
via a 32-port switch with a 6.4 Tbps programmable Tofino
ASIC. Both servers were equipped with Intel Xeon Gold 6240
Processors [11] and 100 Gbps Mellanox ConnectX-5 NICs.
For a fair comparison, we limit the memory bandwidth of the
memory nodes to 25 GB/s (FPGA’s peak bandwidth) using In-
tel Resource Director [27] and report energy consumption of
the minimum number of CPU cores needed to saturate the
bandwidth. We use Bluefield-2 [13] DPU as our ARM-based
SmartNICs with 8 Cortex-A72 cores and 16 GB DRAM. For
pulse, we placed two memory nodes on each FPGA NIC (one
per port, a total of 4 memory nodes). Our results translate to
larger setups since pulse’s performance or energy efficiency
are independent of dataset size and cluster scale.
Applications & workloads. We consider 3 applications
with varying data structure complexity, compute/memory-
access ratio, and iteration count per request (Table 3): (i)Web

Application Data Structure 𝑡𝑐/𝑡𝑑 #Iterations
WebService Hash-table 0.06 48
WiredTiger B+Tree 0.63 25
BTrDB (1𝑠 to 8𝑠) 0.71 38–227

Table 3. Workloads used in our evaluation (§6). 𝑡𝑐 and 𝑡𝑑 corre-
spond to compute and memory access time at the pulse accelerator.

Service [127] that processes user requests by retrieving user
IDs from an in-memory hash table, using these IDs to fetch
8 KB objects, which are then encrypted, compressed and
returned to the user. Requests are generated using YCSB A
(50% read/50% update), B (95% read/5% update), and C (100%
read) workloads with Zipf distribution [58]. (ii)WiredTiger
Storage Engine (MongoDB backend [108]) uses B+Trees to in-
dex NoSQL tables. Our frontend issues range query requests
over the network toWiredTiger and plots the results. Similar
to prior work [127, 164], we model user queries using the
YCSB E workload with Zipf distribution [58] on 8 B keys
and 240 B values. (iii) BTrDB Time-series Database [45] is a
database designed for visualizing patterns in time-series data.
BTrDB reads the data from a B+Tree-based store for a given
user query and renders the time-series data through an inter-
active user interface [9]. We run stateful aggregations (sum,
average, min, max) for time windows of different resolutions,
from 1 s to 8 s, on the Open 𝜇PMUDataset [137] with voltage,
current, and phase readings from LBNL’s power grid [45].

6.1 Performance for Real-world Applications
Since AIFM [127] does not natively support B+-Trees or
distributed execution, we restrict the Cache+RPC approach
to the Web Service application on a single node.
Single-node performance. Fig. 7 demonstrates the ad-
vantages of accelerating pointer-traversals at disaggregated
memory. Compared to the Cache-based approach, pulse
achieves 9–34.4× lower latency and 28–171× higher through-
put across all applications using only one network round-
trip per request. RPC-based systems observe 1–1.4× lower
latency than pulse due to their 9× higher CPU clock rates.
We believe an ASIC-based realization of pulse has the po-
tential to close or even overcome this gap. Cache+RPC in-
curs higher latency than RPC due to its TCP-based DPDK
stack [117, 127] and does not outperform RPC, indicating
that data structure-aware caching is not beneficial due to
poor locality.

Latency depends on the number of nodes traversed during
a single request and the response size. WebService experi-
ences the highest latency due to large 8 KB responses and
long traversal length per request. In BTrDB, the latency in-
creases (and the throughput decreases) as the window size
grows due to the longer pointer traversals (see Table 3). In-
terestingly, the Cache-based approach performs significantly
better for BTrDB thanWebService andWiredTiger due to the

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

800

1000

0

30

60

YCSB-A

800

1000

0

30

60

YCSB-B

800

1000

0

30

60

YCSB-C

80

500

1 2 3 4
0

30

60

resolution: 1s

80

500

1 2 3 4
0

30

60

resolution: 2s

80

500

1 2 3 4
0

30

60

resolution: 4s

80

500

1 2 3 4
0

30

60

resolution: 8s

Number of memory nodes

800

1000

0

100

160

YCSB-E

WebService WiredTiger

BTrDB

L
at

en
cy

(µ
s)

Cache-based RPC RPC-ARM Cache+RPC PULSE

300

900

1500

0

10

20

YCSB-A

300

900

1500

0

10

20

YCSB-B

300

900

1500

0

10

20

YCSB-C

1000

8000

15000

1 2 3 4
0

40

80

resolution: 1s

1000

8000

15000

1 2 3 4
0

40

80

resolution: 2s

1000

8000

15000

1 2 3 4
0

40

80

resolution: 4s

1000

8000

15000

1 2 3 4
0

40

80

resolution: 8s

Number of memory nodes

3000

7500

12000

0

20

40

YCSB-E

WebService WiredTiger

BTrDB

T
hr

ou
gh

pu
t

(K
op

s/
s)

Fig. 7. Application latency (top) & throughput (bottom) (§6.1). The darker color indicates the time spent on cross-node pointer traversals,
which increases with the number of memory nodes in WiredTiger and BTrDB.

better data locality in time-series analysis of chronologically
ordered data. However, its throughput remains significantly
lower than both pulse and RPC since it is bottlenecked by the
swap system performance, which could not evict pages fast
enough to bring in new data. This is verified in our analysis
of resource utilization (deferred to Appendix for brevity); we
find that RPC, RPC-ARM, Cache+RPC, and pulse can utilize
more than 90% of the memory bandwidth across the applica-
tions, while the Cache-based approach observes less than 1
Gbps network bandwidth. The other systems — pulse, RPC,
RPC-ARM, and Cache+RPC — can also saturate available
memory bandwidth (around 25 GB/s) by offloading pointer

traversals to the memory node, consuming only 0.5%–25%
of the available network bandwidth.
Distributed pointer traversals. Fig. 7 shows that employ-
ing multiple memory nodes introduces two major changes
in performance trends: (i) the latency increases when the
pointer traversal spans multiple memory nodes, and (ii)
throughput increases with the number of nodes since the sys-
tems can exploit more CPUs or accelerators. WebService is
an exception to the trend: since the hash table is partitioned
across memory nodes based on primary keys, the linked list
for a hash bucket resides in a single memory node.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

WebService WiredTiger BTrDB
0
1
2
3
4
5
6

E
ne

rg
y

p
er

op
er

at
io

n
(m

J) Res:1s Res:2s Res:4s Res:8s

RPC

RPC-ARM

Cache+RPC

PULSE

PULSE-ASIC (estimated)

Fig. 8. Application energy consumption per operation (§6.1).

pulse observes lower latency than the compared systems
due to in-network support for distributed pointer-traversals
(§5). The latency increases significantly from one to two
memory nodes for all systems since traversing to the next
pointer on a different memory node adds 5–10 𝜇s network
latency. Also, even across two memory nodes, a request
can trigger multiple inter-node pointer traversals incurring
multiple network round-trips; for WiredTiger and BtrDB,
10%–30% of pointer traversals are inter-node. However, in-
network traversals allow pulse to reduce latency overheads
by 33–98%, with 1.1–1.36× higher throughput than RPC.
Energy consumption. We compared energy consumed
per request for pulse and RPC schemes at a request rate
that ensured memory bandwidth was saturated for both.
We measure energy consumption using Xilinx XRT [37] for
pulse (all power rails) and Intel RAPL tools [78] for RPC on
CPUs [11] (CPU package and DRAM only). For RPC-ARM
on ARM cores, since there is no power-related performance
counter [17] or open-source tool available, we adapt the mea-
surement approach from prior work [74]. Specifically, we
calculate the CPU package’s energy using application CPU
cycle counts and DRAM power using Micron’s estimation
tool [25]. Finally, we conservatively estimate ASIC power
using our FPGA prototype: we scale down the ASIC energy
only for pulse accelerator using the methodology employed
in prior research [95] while using the unscaled FPGA energy
for other components (DRAM, third-party IPs, etc.). As such,
we measure an upper bound on pulse and pulse-asic energy
use, and a lower bound for RPC, RPC-ARM, and Cache+RPC.
Fig. 8 shows that pulse achieves a 4.5–5× reduction in

energy use per operation compared to RPCs on a general-
purpose CPU, due to its disaggregated architecture (§4.2).
Our estimation shows that pulse’s ASIC realization can con-
servatively reduce energy use by an additional 6.3−7× factor.
Finally, RPC-ARM’s total energy consumption per request
can exceed that of standard cores, as seen in the WebService
workload. This observation aligns with prior studies [74],
which attribute the increased energy use to their longer exe-
cution times, resulting in higher aggregate energy demands.

6.2 Understanding pulse Performance

Distributed pointer traversals. We evaluate the impact
of distributed pointer traversals (§5) by comparing pulse

W
eb

Ser
vic

e

W
ire

dTig
er

BTrD
B

W
eb

Ser
vic

e

W
ire

dTig
er

BTrD
B

0

50

100

L
at

en
cy

(µ
s)

W
eb

Ser
vic

e

W
ire

dTig
er

BTrD
B

W
eb

Ser
vic

e

W
ire

dTig
er

BTrD
B

100

1000

10000

T
hr

ou
gh

pu
t

(K
op

s/
s)

Single Distributed Single Distributed

PULSE PULSE-acc

Fig. 9. Impact of distributed pointer traversals (§6.2).

Network Stack Scheduler TCAM InterconnectMemory Controller Logic

10 ns47 ns110 ns22 ns5.1 ns426.3 ns

Fig. 10. Latency breakdown for pulse accelerator (§6.2).

#Logic
Pipelines

#Memory
Pipelines LUT % BRAM % Throughput

(Mops/s)
Latency
(us)

Co
up

le
d 1 1 7.37 7.29 0.41 33.25

2 2 10.23 9.37 0.63 (+53%) 33.73
3 3 14.33 15.92 0.87 (+112%) 34.66
4 4 18.55 17.09 1.20 (+193%) 35.11

pu
ls
e

1 1 5.88 8.17 0.51 37.57
1 2 7.44 9.14 0.73 (+43%) 36.74
1 3 8.32 11.19 1.01 (+98%) 38.46
1 4 9.19 12.92 1.24 (+143%) 38.37
2 1 8.87 10.19 0.48 (-6%) 40.27
2 2 10.69 11.19 0.76 (+49%) 39.47
2 3 13.11 13.38 0.99 (+94%) 41.37
2 4 15.07 15.61 1.19 (+133%) 40.37
3 1 14.08 11.93 0.46 (-10%) 42.38
3 2 15.79 13.78 0.69 (+35%) 43.11
3 3 18.61 15.06 1.03 (+102%) 40.98
3 4 19.20 17.47 1.17 (+129%) 44.02
4 1 18.67 14.17 0.37 (-27%) 42.16
4 2 20.37 16.02 0.51 (0%) 43.00
4 3 22.08 17.86 1.10 (+116%) 43.86
4 4 23.21 19.92 1.14 (+123%) 41.47

Table 4. Coupled (multi-core) vs. pulse’s disaggregated archi-
tecture (§6.2). The highlighted configuration depicts pulse’s
Pareto-optimal resource usage and performance.

against pulse-acc, a pulse variant that sends requests back
to the CPU node if the next pointer is not found on the
memory node. Fig. 9 shows that while both have identical
performance on a single memory node, pulse-acc observes
1.02–1.15× higher latency for two nodes. On the other hand,
their throughput is the same since, under sufficient load,
memory node bandwidth bottlenecks the system for both.
Latency breakdown for pulse accelerator. Fig. 10 shows
the latency contributions of various hardware components
at the pulse accelerator for the WebService application. The
network stack first processes the pointer traversal request
in about 430 ns, after which the WebService payload is pro-
cessed by the scheduler and dispatched to an idle memory
access pipeline in 5.1 ns. Then, the memory pipeline takes
∼132 ns to perform address translation, memory protection,
and data fetch from DRAM. Finally, the logic pipeline takes
10 ns to check the termination conditions and determine the
next pointer to look up. This process repeats until the termi-
nation condition is met. The time to send a response back
over the network stack is symmetric to the request path.

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 .25 .5 .75 1
η

1.00

1.25

1.50

1.75

2.00

P
er

fo
rm

an
ce

p
er

W
at

t
(N

or
m

al
iz

ed
)

tc
td

PULSE

Fig. 11. pulse sensitivity to 𝜂 (§6.2). Performance-per-watt is
normalized by the value at 𝜂 = 1.

W
eb

Ser
vic

e

W
ire

dTig
er

BTrD
B-1

s

BTrD
B-2

s

BTrD
B-3

s

BTrD
B-4

s
0

2

4

6

8

10

S
lo

w
do

w
n

(N
or

m
al

iz
ed

to
L

o
ca

l)

W
eb

Ser
vic

e

W
ire

dTig
er

BTrD
B-5

s

BTrD
B-6

s

BTrD
B-7

s

BTrD
B-8

s
0

2

4

6

8

10Four nodes One node

CXL w/o PULSE CXL w/ PULSE

Fig. 12. Slowdown with simulated CXL interconnect (§7).

Benefits of disaggregating memory and logic pipelines.
Table 4 compares the area usage (percentage of BRAM/LUT
resources used on FPGA) and performance (throughput/la-
tency for the WebService application) of pulse’s disaggre-
gated and traditional coupled (i.e., multi-core) designs, which
combines logic and memory pipelines into cores. pulse re-
quires slightly more area than the coupled design when the
number of logic and memory pipelines are equal to accom-
modate additional logic and buffers across the interconnect
and the scheduler. However, due to the memory-intensive
nature of pointer traversal operations (§4), pulse can achieve
similar performance with fewer logic pipelines and, there-
fore, less area. To saturate memory bandwidth (and thus
maximize throughput) for the WebService application, pulse
only needs one logic pipeline and four memory pipelines,
while a traditional core architecture must use four cores.
As such, pulse saves 38% area with a marginal 7% latency
increase due to scheduling and workspace overheads.
Sensitivity to 𝜂 Parameter.We evaluate pulse ’s sensitiv-
ity to 𝜂 by varying the number of memory pipelines with
a single logic pipeline for the WebService application. Fig-
ure 11 shows that as 𝜂 in pulse accelerator approaches the
workload’s compute-to-memory ratio (∼ 1/16), its perfor-
mance per watt improves significantly since the accelerator
resources better match the workload needs. In contrast, large
𝜂 values lead to underutilization of the logic pipeline and,
thus, wasted energy. For instance, decreasing the 𝜂 value
from 1 to 1/4 increases the performance-per-watt by 1.9×!

7 Future Trends and Research
Next-generation interconnects. While pulse is imple-
mented atop Ethernet, its design is interconnect-agnostic. It
could be realized over emerging interconnects like CXL [24,

102, 138]. We have verified these benefits in simulation atop
traces of our evaluated applications. Our simulator used 2
GB DRAM as CPU-attached cache, while the entire work-
ing set is stored on CXL-attached memory. Following prior
work [101], wemodel 10–20 ns L3 cache latency, 80 ns DRAM
latency, 300 ns CXL-attached memory latency, and 256 B
access granularity. We simulate both a four-memory-node
setup, which uses a CXL switch with pulse logic and a pulse
accelerator at each memory node, and a single-node setup
with no switch. We assume a conservative overhead for
pulse, using our Ethernet switch and FPGA latencies.
Fig. 12 shows the slowdown of workloads on CXL mem-

ory versus local DRAM, both with and without pulse. pulse
reduces CXL’s slowdown by 3–5× in the four-node setup,
and by 4.2–5.2× in the single-node setup. While real hard-
ware realization is necessary to quantify pulse’s benefits
precisely, our simulation (with optimistic CXL latency and
conservative pulse overheads) highlights the potential for
improving performance in such interconnects.
Data encryption in memory. With increasing focus on
trusted server infrastructure for secure cloud, an interesting
avenue of future research is enabling near-memory process-
ing over encrypted disaggregated memory. We identify two
critical challenges. The first involves managing encryption
keys securely, especially since the pulse accelerator, an inter-
mediary, could be compromised. We argue for incorporating
a Trusted Execution Environment (TEE) in pulse, similar to
prior FPGA systems that isolate sensitive key management
functions [114, 119, 126, 150, 163]. The second challenge in-
volves hiding memory access patterns as a side channel over
encrypted memory [55, 79, 88, 91]. While several recent ad-
vances in noise injection techniques permit efficient defense
mechanisms against side-channel attacks [71, 82, 143], de-
veloping performant solutions in hardware remains an open
problem.

8 Related work
Memory disaggregation. Disaggregated memory systems
span both RDMA-based [42, 72, 100, 130] and CXL-based
interconnects [69, 70, 140, 147]. Even with gigabytes of
DRAM at compute nodes, these approaches observe sig-
nificant performance degradation for workloads with poor
data locality when most data accesses hit slower disaggre-
gated memory. Application-integrated disaggregated mem-
ory schemes alleviate some of the performance overheads for
specific scenarios, e.g., garbage collection, key-value storage,
etc. [127, 141, 144, 145], but do not generalize to other scenar-
ios. pulse aims to enable efficient execution for a large class
of pointer traversal workloads by placing general but light-
weight processing primitives close to the memory nodes.
Near-memory processing. Limited data bandwidth be-
tween compute and storage devices and the high cost of

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

data movement are well-documented in the architecture
community. Several works have proposed hardware archi-
tectures that move computations close to storage or mem-
ory [52, 57, 61, 148], albeit with limited flexibility for express-
ing offloaded logic. Another related class of approaches has
targeted graph-processing accelerators for machine learning
workloads [86, 96] — these still suffer from limited expres-
siveness for general data structures. Recent efforts in the
industry have also explored placing accelerators at or close
tomemory devices [83, 125]. Unfortunately, most approaches
require micro-architectural modifications to enable near- or
on-memory processing. pulse instead focuses on leveraging
programmable networks for accelerating pointer traversals
on linked structures in disaggregated architectures.
Prefetching. As noted in §2.2, while prefetching [41, 103,
155] can be used to pipeline remote memory accesses during
pointer traversals over disaggregated memory, its benefits
are limited in for pointer traversals. However, prefetching
and pulse’s approach of near-memory processing are or-
thogonal. Indeed, pulse complements prefetching by enhanc-
ing performance for workloads where the effectiveness of
prefetching techniques is limited.

9 Conclusion
We have designed pulse to accelerate pointer traversals
across linked data structures close to disaggregated mem-
ory in a manner that preserves expressiveness, ensures en-
ergy efficiency, and supports distributed execution. pulse
makes a principled use of near-memory acceleration, and
programmable network switches for low-latency, high-
throughput pointer traversals on disaggregated memory.

Acknowledgements
Wewould like to thank our shepherd Zsolt István and anony-
mous ASPLOS reviewers for their valuable comments and
insightful feedback. This work is supported in part by NSF
Awards 2047220, 2112562, 2147946, 2118851, and a NetApp
Faculty Fellowship.

References
[1] 2007. Boost AVL tree. https://www.boost.org/doc/libs/1
_35_0/doc/html/intrusive/avl_set_multiset.html.

[2] 2007. Boost library. https://www.boost.org/.
[3] 2007. Boost splay tree. https://www.boost.org/doc/libs
/1_35_0/doc/html/intrusive/splay_set_multiset.
html.

[4] 2008. Boost scapegoat tree. https://www.boost.org/doc/
libs/1_38_0/doc/html/intrusive/sg_set_multiset
.html.

[5] 2008. Boost unordered map. https://www.boost.org/doc/
libs/1_38_0/doc/html/boost/unordered_map.html.

[6] 2008. Boost unordered set. https://www.boost.org/doc/li
bs/1_51_0/doc/html/boost/unordered_set.html.

[7] 2011. Google BTree. https://code.google.com/archive/
p/cpp-btree/.

[8] 2013. AMBA AXI and ACE Protocol Specification. https://de
veloper.arm.com/documentation/ihi0022/e/?lang=
en.

[9] 2016. Mr. Plotter: A Multi-Resolution Plotter compatible with BTrDB.
https://github.com/BTrDB/mr-plotter.

[10] 2017. RoCE vs. iWARP Competitive Analysis. https://www.me
llanox.com/related-docs/whitepapers/WP_RoCE_v
s_iWARP.pdf.

[11] 2019. Intel Xeon Gold 6240 Processor datasheet. https://ark.
intel.com/content/www/us/en/ark/products/19244
3/intel-xeon-gold-6240-processor-24-75m-cache-
2-60-ghz.html.

[12] 2019. Terabit Ethernet: The New Hot Trend in Data Centers. https:
//www.lanner-america.com/blog/terabit-ethern
et-new-hot-trend-data-centers/.

[13] 2020. NIVIDIA MELLANOX BLUEFIELD-2. https://networ
k.nvidia.com/files/doc-2020/pb-bluefield-2-
smart-nic-eth.pdf.

[14] 2022. Boost bimap. https://www.boost.org/doc/libs/1
_80_0/libs/bimap/doc/html/index.html.

[15] 2023. C++ std::iterator. https://en.cppreference.com/w/
cpp/iterator/iterator.

[16] 2023. Standard containers. https://cplusplus.com/refere
nce/stl/.

[17] 2024. AArch64 Performance Monitors registers. https://develo
per.arm.com/documentation/100095/0002/system-
control/aarch64-register-summary/aarch64-perf
ormance-monitors-registers.

[18] 2024. C++ standard forward_list container. https://en.cppre
ference.com/w/cpp/container/forward_list.

[19] 2024. C++ standard list container. https://en.cppreferenc
e.com/w/cpp/container/list.

[20] 2024. C++ standard map container. https://en.cppreferenc
e.com/w/cpp/container/map.

[21] 2024. C++ standard multimap container. https://en.cpprefe
rence.com/w/cpp/container/multimap.

[22] 2024. C++ standard multiset container. https://en.cpprefe
rence.com/w/cpp/container/multiset.

[23] 2024. C++ standard set container. https://en.cppreference.
com/w/cpp/container/set.

[24] 2024. Compute Express Link (CXL). https://www.computee
xpresslink.org/.

[25] 2024. DDR4 POWER CALC.XLSM. https://www.micron
.com/sales-support/design-tools/dram-power-
calculator.

[26] 2024. DPDK. https://www.dpdk.org/.
[27] 2024. Intel(R) RDT Software Package. https://github.com/i
ntel/intel-cmt-cat.

[28] 2024. Java iterator. https://www.w3schools.com/java/j
ava_iterator.asp.

[29] 2024. LLVM’s Analysis and Transform Passes. https://llvm.o
rg/docs/Passes.html#introduction.

[30] 2024. MemCached. http://www.memcached.org.
[31] 2024. MySQL: Adaptive Hash Index. https://dev.mysql.co
m/doc/refman/8.0/en/innodb-adaptive-hash.html.

[32] 2024. Teradata: Hash Indexes. https://docs.teradata.
com/r/Enterprise_IntelliFlex_VMware/Database-
Design/Join-and-Hash-Indexes/Hash-Indexes.

[33] 2024. The LLVM Compiler Infrastructure. https://llvm.org/.
[34] 2024. VoltDB. http://voltdb.com/downloads/datashe
ets_collateral/technical_overview.pdf.

[35] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar,
Bhuwan Chopra, Ciprian Gerea, Daniel Merl, Josh Metzler, David
Reiss, Subbu Subramanian, Janet L. Wiener, and Okay Zed. 2013.
Scuba: Diving into Data at Facebook. PVLDB 6, 11 (2013).

https://www.boost.org/doc/libs/1_35_0/doc/html/intrusive/avl_set_multiset.html
https://www.boost.org/doc/libs/1_35_0/doc/html/intrusive/avl_set_multiset.html
https://www.boost.org/
https://www.boost.org/doc/libs/1_35_0/doc/html/intrusive/splay_set_multiset.html
https://www.boost.org/doc/libs/1_35_0/doc/html/intrusive/splay_set_multiset.html
https://www.boost.org/doc/libs/1_35_0/doc/html/intrusive/splay_set_multiset.html
https://www.boost.org/doc/libs/1_38_0/doc/html/intrusive/sg_set_multiset.html
https://www.boost.org/doc/libs/1_38_0/doc/html/intrusive/sg_set_multiset.html
https://www.boost.org/doc/libs/1_38_0/doc/html/intrusive/sg_set_multiset.html
https://www.boost.org/doc/libs/1_38_0/doc/html/boost/unordered_map.html
https://www.boost.org/doc/libs/1_38_0/doc/html/boost/unordered_map.html
https://www.boost.org/doc/libs/1_51_0/doc/html/boost/unordered_set.html
https://www.boost.org/doc/libs/1_51_0/doc/html/boost/unordered_set.html
https://code.google.com/archive/p/cpp-btree/
https://code.google.com/archive/p/cpp-btree/
https://developer.arm.com/documentation/ihi0022/e/?lang=en
https://developer.arm.com/documentation/ihi0022/e/?lang=en
https://developer.arm.com/documentation/ihi0022/e/?lang=en
https://github.com/BTrDB/mr-plotter
https://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
https://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192443/intel-xeon-gold-6240-processor-24-75m-cache-2-60-ghz.html
https://www.lanner-america.com/blog/terabit-ethernet-new-hot-trend-data-centers/
https://www.lanner-america.com/blog/terabit-ethernet-new-hot-trend-data-centers/
https://www.lanner-america.com/blog/terabit-ethernet-new-hot-trend-data-centers/
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-2-smart-nic-eth.pdf
https://www.boost.org/doc/libs/1_80_0/libs/bimap/doc/html/index.html
https://www.boost.org/doc/libs/1_80_0/libs/bimap/doc/html/index.html
https://en.cppreference.com/w/cpp/iterator/iterator
https://en.cppreference.com/w/cpp/iterator/iterator
https://cplusplus.com/reference/stl/
https://cplusplus.com/reference/stl/
 https://developer.arm.com/documentation/100095/0002/system-control/aarch64-register-summary/aarch64-performance-monitors-registers
 https://developer.arm.com/documentation/100095/0002/system-control/aarch64-register-summary/aarch64-performance-monitors-registers
 https://developer.arm.com/documentation/100095/0002/system-control/aarch64-register-summary/aarch64-performance-monitors-registers
 https://developer.arm.com/documentation/100095/0002/system-control/aarch64-register-summary/aarch64-performance-monitors-registers
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/forward_list
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/list
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/multimap
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/multiset
https://en.cppreference.com/w/cpp/container/set
https://en.cppreference.com/w/cpp/container/set
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.micron.com/sales-support/design-tools/dram-power-calculator
https://www.micron.com/sales-support/design-tools/dram-power-calculator
https://www.micron.com/sales-support/design-tools/dram-power-calculator
https://www.dpdk.org/
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://www.w3schools.com/java/java_iterator.asp
https://www.w3schools.com/java/java_iterator.asp
 https://llvm.org/docs/Passes.html##introduction
 https://llvm.org/docs/Passes.html##introduction
http://www.memcached.org
https://dev.mysql.com/doc/refman/8.0/en/innodb-adaptive-hash.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-adaptive-hash.html
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Design/Join-and-Hash-Indexes/Hash-Indexes
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Design/Join-and-Hash-Indexes/Hash-Indexes
https://docs.teradata.com/r/Enterprise_IntelliFlex_VMware/Database-Design/Join-and-Hash-Indexes/Hash-Indexes
https://llvm.org/
http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf
http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[36] Inc. Advanced Micro Devices. 2024. Xilinx Content Addressable
Memory (CAM). https://www.xilinx.com/products/in
tellectual-property/ef-di-cam.html.

[37] Inc. Advanced Micro Devices. 2024. Xilinx Runtime Library (XRT).
https://www.xilinx.com/products/design-tools/
vitis/xrt.html.

[38] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. 2015. Succinct:
Enabling Queries on Compressed Data. In USENIX NSDI.

[39] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati,
Rajesh Venkatasubramanian, andMichaelWei. 2017. RemoteMemory
in the Age of Fast Networks. In SoCC.

[40] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. 2015. A scalable processing-in-memory accelerator for
parallel graph processing. In ISCA. 105–117.

[41] Hasan Al Maruf andMosharaf Chowdhury. 2020. Effectively prefetch-
ing remote memory with leap. In USENIX ATC. 843–857.

[42] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy,
and Scott Shenker. 2020. Can Far Memory Improve Job Throughput?.
In EuroSys.

[43] Emmanuel Amaro, Zhihong Luo, Amy Ousterhout, Arvind Krishna-
murthy, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2020.
Remote Memory Calls. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks. 38–44.

[44] Hang An, Fang Wang, Dan Feng, Xiaomin Zou, Zefeng Liu, and
Jianshun Zhang. 2023. Marlin: A Concurrent and Write-Optimized
B+-tree Index on Disaggregated Memory. In ACM ICPP.

[45] Michael P. Andersen and David E. Culler. 2016. BTrDB: Optimizing
Storage System Design for Timeseries Processing. In USENIX FAST.

[46] Krste Asanović. 2014. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers.

[47] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and
Nam Sung Kim. 2016. Chameleon: Versatile and practical near-DRAM
acceleration architecture for large memory systems. In IEEE/ACM
MICRO.

[48] Nikolas Askitis and Ranjan Sinha. 2007. HAT-trie: A Cache-conscious
Trie-based Data Structure for Strings. In ACSC.

[49] R. Bayer and E. McCreight. 1970. Organization and Maintenance of
Large Ordered Indices. In ACM-SIGMOD Workshop on Data Descrip-
tion, Access and Control.

[50] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, and Gregory R. Ganger. 2020. The CacheLib
Caching Engine: Design and Experiences at Scale. In USENIX OSDI.

[51] Ankit Bhardwaj, Chinmay Kulkarni, and Ryan Stutsman. 2020. Adap-
tive Placement for In-memory Storage Functions. In USENIX ATC.

[52] Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran
Hajinazar, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu.
2019. CoNDA: Efficient Cache Coherence Support for near-Data
Accelerators. In ISCA. 629–642.

[53] Anastasia Braginsky and Erez Petrank. 2012. A Lock-free B+Tree. In
SPAA.

[54] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka,
Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulka-
rni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkat Venkataramani. 2013. TAO: Facebook’s Distributed
Data Store for the Social Graph. In USENIX ATC.

[55] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015.
Leakage-Abuse Attacks Against Searchable Encryption. In ACM CCS.

[56] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. 2016. Prime: A novel processing-in-
memory architecture for neural network computation in reram-based
main memory. ACM SIGARCH Computer Architecture News 44, 3

(2016), 27–39.
[57] Benjamin Y. Cho, Yongkee Kwon, Sangkug Lym, and Mattan Erez.

2020. Near Data Acceleration with Concurrent Host Access. In ISCA.
818–831.

[58] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10). 143–154.

[59] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun,
Yongpan Liu, YuWang, Yuan Xie, and Huazhong Yang. 2018. GraphH:
A processing-in-memory architecture for large-scale graph process-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38, 4 (2018), 640–653.

[60] Guohao Dai, Zhenhua Zhu, Tianyu Fu, Chiyue Wei, Bangyan Wang,
Xiangyu Li, Yuan Xie, Huazhong Yang, and Yu Wang. 2022. Dimmin-
ing: pruning-efficient and parallel graph mining on near-memory-
computing. In ISCA. 130–145.

[61] Alexandar Devic, Siddhartha Balakrishna Rai, Anand Sivasubrama-
niam, Ameen Akel, Sean Eilert, and Justin Eno. 2022. To PIM or Not
for Emerging General Purpose Processing in DDR Memory Systems.
In ISCA. 231–244.

[62] Charles Eckert, Arun Subramaniyan, Xiaowei Wang, Charles Au-
gustine, Ravishankar Iyer, and Reetuparna Das. 2022. Eidetic: An
in-memory matrix multiplication accelerator for neural networks.
IEEE Trans. Comput. (2022).

[63] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3:
Compact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In USENIX NSDI.

[64] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrián Cristal,
Mark D. Hill, Kathryn S. McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman S. Ünsal. 2016. Range Translations for Fast Virtual
Memory. IEEE Micro 36, 3 (2016), 118–126.

[65] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
2016. Network Requirements for Resource Disaggregation. In USENIX
OSDI.

[66] Juan Gómez-Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F Oliveira, Gagandeep Singh, and Onur Mutlu.
2023. Evaluating machine learning workloads on memory-centric
computing systems. In 2023 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). IEEE, 35–49.

[67] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs. In USENIX OSDI.

[68] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. 2014. GraphX: Graph Processing
in a Distributed Dataflow Framework. In USENIX OSDI.

[69] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee,
and Myoungsoo Jung. 2023. Memory pooling with cxl. IEEE Micro
43, 2 (2023), 48–57.

[70] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo
Jung. 2022. Direct access, High-Performance memory disaggregation
with DirectCXL. In USENIX ATC.

[71] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd
Brown, Lucy Li, Rachit Agarwal, and Thomas Ristenpart. 2020. Pan-
cake: Frequency smoothing for encrypted data stores. In USENIX
Security.

[72] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. 2017. Efficient Memory Disaggregation with
Infiniswap. In USENIX NSDI.

[73] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang,
Dimin Niu, and Yuan Xie. 2020. iPIM: Programmable in-memory
image processing accelerator using near-bank architecture. In ISCA.
IEEE, 804–817.

https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://www.xilinx.com/products/intellectual-property/ef-di-cam.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

[74] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying
Zhang. 2022. Clio: A Hardware-Software Co-Designed Disaggregated
Memory System. In ACM ASPLOS.

[75] Steffen Heinz, Justin Zobel, and Hugh E Williams. 2002. Burst tries:
a fast, efficient data structure for string keys. TOIS (2002).

[76] KevinHsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Ami-
rali Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating
pointer chasing in 3D-stacked memory: Challenges, mechanisms,
evaluation. In International Conference on Computer Design (ICCD).

[77] Stratos Idreos, F. Groffen, Niels Nes, Stefan Manegold, Sjoerd Mullen-
der, and Martin Kersten. 2012. MonetDB: Two Decades of Research
in Column-oriented Database Architectures. IEEE Data Eng. Bull. 35
(01 2012).

[78] Intel Corporation. 2024. Intel 64 and IA-32 Architectures Software
Developer’s Manual. https://www.intel.com/content/
www/us/en/developer/articles/technical/intel-
sdm.html.

[79] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu.
2012. Access pattern disclosure on searchable encryption: Ramifica-
tion, attack and mitigation. In NDSS.

[80] Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and Babak Falsafi. 2014.
Unison cache: A scalable and effective die-stacked DRAM cache. In
IEEE/ACM MICRO.

[81] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-stacked
dram caches for servers: Hit ratio, latency, or bandwidth? have it all
with footprint cache. ACM SIGARCH Computer Architecture News 41,
3 (2013), 404–415.

[82] Grace Jia, Rachit Agarwal, and Anurag Khandelwal. 2024. Length
Leakage in Oblivious Data Access Mechanisms. In USENIX Security.

[83] Dave Jiang. 2019. Introducing the Intel® Data Streaming Accelerator
(Intel® DSA). https://01.org/blogs/2019/introducin
g-intel-data-streaming-accelerator.

[84] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter
RPCs can be General and Fast. In USENIX NSDI.

[85] Uksong Kang, Hak-Soo Yu, Churoo Park, Hongzhong Zheng, John
Halbert, Kuljit Bains, S Jang, and Joo Sun Choi. 2014. Co-architecting
controllers and DRAM to enhance DRAM process scaling. In The
memory forum, Vol. 14.

[86] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,
Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim
Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang, Bran-
don Reagen, Carole-Jean Wu, Mark Hempstead, and Xuan Zhang.
2020. RecNMP: Accelerating Personalized Recommendation with
near-Memory Processing. In ISCA. 790–803.

[87] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang,
Sukhan Lee, Songyi Han, YeonGon Cho, Jin Hyun Kim, Yongsuk
Kwon, et al. 2021. Near-memory processing in action: Accelerating
personalized recommendation with axdimm. IEEE Micro 42, 1 (2021),
116–127.

[88] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill.
2016. Generic Attacks on Secure Outsourced Databases. In ACM CCS.

[89] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2016. BlowFish:
Dynamic Storage-Performance Tradeoff in Data Stores.. In USENIX
NSDI.

[90] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim,
and Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerat-
ing Index Traversals for in-Memory Databases. In IEEE/ACMMICRO.

[91] Evgenios Kornaropoulos, Charalampos Papamanthou, and Roberto
Tamassia. 2019. Data Recovery on Encrypted Databases with k-
Nearest Neighbor Query Leakage. In IEEE S&P.

[92] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS
abstractions make sense on FPGAs?. In USENIX OSDI.

[93] Konstantinos Koukos, David Black-Schaffer, Vasileios Spiliopoulos,
and Stefanos Kaxiras. 2013. Towards More Efficient Execution: A De-
coupled Access-Execute Approach. In Proceedings of the 27th Interna-
tional ACM Conference on International Conference on Supercomputing
(ICS ’13).

[94] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian Zhang, Robert
Ricci, and Ryan Stutsman. 2018. Splinter: Bare-Metal Extensions for
Multi-Tenant Low-Latency Storage. In USENIX OSDI.

[95] Ian Kuon and Jonathan Rose. 2006. Measuring the Gap between
FPGAs and ASICs. In Proceedings of the 2006 ACM/SIGDA 14th Inter-
national Symposium on Field Programmable Gate Arrays (FPGA ’06).
21–30.

[96] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A
Practical near-Memory Processing Architecture for Embeddings and
Tensor Operations in Deep Learning. In IEEE/ACM MICRO. 740–753.

[97] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-Scale Graph Computation on Just a PC. In USENIX OSDI.

[98] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for life-
long program analysis & transformation. In International Symposium
on Code Generation and Optimization (CGO 2004). 75–86.

[99] Seok-Hee Lee. 2016. Technology scaling challenges and opportunities
of memory devices. In International Electron Devices Meeting (IEDM).

[100] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal,
Lin Zhong, and Abhishek Bhattacharjee. 2021. MIND: In-Network
Memory Management for Disaggregated Data Centers. In SOSP.

[101] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bian-
chini. 2023. Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms. In ACM ASPLOS.

[102] Huaicheng Li, Daniel S Berger, Stanko Novakovic, Lisa Hsu, Dan
Ernst, Pantea Zardoshti, Monish Shah, Ishwar Agarwal, Mark Hill,
Marcus Fontoura, et al. 2022. First-generation Memory Disaggrega-
tion for Cloud Platforms. arXiv preprint arXiv:2203.00241 (2022).

[103] Haifeng Li, Ke Liu, Ting Liang, Zuojun Li, Tianyue Lu, Hui Yuan, Yin-
ben Xia, Yungang Bao, Mingyu Chen, and Yizhou Shan. 2023. HoPP:
Hardware-Software Co-Designed Page Prefetching for Disaggregated
Memory. In IEEE HPCA.

[104] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng.
2023. ROLEX: A Scalable RDMA-oriented Learned Key-Value Store
for Disaggregated Memory Systems. In USENIX FAST.

[105] Elliot Lockerman, Axel Feldmann, Mohammad Bakhshalipour,
Alexandru Stanescu, Shashwat Gupta, Daniel Sanchez, and Nathan
Beckmann. 2020. Livia: Data-centric computing throughout the mem-
ory hierarchy. In ACM ASPLOS.

[106] Microsoft Corporation. 2024. SQL Server and Azure SQL Index Architec-
ture and Design Guide. https://learn.microsoft.com/en-
us/sql/relational-databases/sql-server-index-
design-guide?view=sql-server-ver16#hash_index.

[107] Xinhao Min, Kai Lu, Pengyu Liu, Jiguang Wan, Changsheng Xie,
Daohui Wang, Ting Yao, and Huatao Wu. 2024. SepHash: A Write-
Optimized Hash Index On Disaggregated Memory via Separate Seg-
ment Structure. Proc. VLDB Endow. 17, 5 (2024), 1091–1104.

[108] Inc. MongoDB. 2024. WiredTiger storage engine. https://docs
.mongodb.com/manual/core/wiredtiger/.

[109] Donald R. Morrison. 1968. PATRICIA - Practical Algorithm To Re-
trieve Information Coded in Alphanumeric. JACM (1968).

[110] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata
Ausavarungnirun. 2019. Processing data where it makes sense: En-
abling in-memory computation. Microprocessors and Microsystems 67
(2019), 28–41.

[111] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata
Ausavarungnirun. 2022. A modern primer on processing in memory.
In Emerging Computing: From Devices to Systems: Looking Beyond
Moore and Von Neumann. Springer, 171–243.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver16##hash_index
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver16##hash_index
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-index-design-guide?view=sql-server-ver16##hash_index
https://docs.mongodb.com/manual/core/wiredtiger/
https://docs.mongodb.com/manual/core/wiredtiger/

pulse: Accelerating Distributed Pointer-Traversals on Disaggregated Memory ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[112] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. 2013. Scaling memcache at facebook. In USENIX NSDI.

[113] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying
Zhang, Haggai Eran, Boris Pismenny, Liran Liss, Michael Wei, Dan
Tsafrir, and Marcos Aguilera. 2019. Storm: A Fast Transactional
Dataplane for Remote Data Structures. In SYSTOR. 97–108.

[114] Hyunyoung Oh, Kevin Nam, Seongil Jeon, Yeongpil Cho, and Yun-
heung Paek. 2021. MeetGo: A trusted execution environment for
remote applications on FPGA. IEEE Access 9 (2021), 51313–51324.

[115] Ataberk Olgun, Juan Gómez Luna, Konstantinos Kanellopoulos,
Behzad Salami, Hasan Hassan, Oguz Ergin, and Onur Mutlu.
2022. PiDRAM: A Holistic End-to-end FPGA-based Framework for
Processing-in-DRAM. ACM Transactions on Architecture and Code
Optimization 20, 1 (2022), 1–31.

[116] Geraldo F Oliveira, Juan Gómez-Luna, Saugata Ghose, Amirali
Boroumand, and Onur Mutlu. 2022. Accelerating neural network
inference with processing-in-DRAM: from the edge to the cloud. IEEE
Micro 42, 6 (2022), 25–38.

[117] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In USENIX NSDI.

[118] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
1999. The PageRank Citation Ranking: Bringing Order to the Web.
Technical Report.

[119] Sérgio Pereira, David Cerdeira, Cristiano Rodrigues, and Sandro Pinto.
2021. Towards a trusted execution environment via reconfigurable
FPGA. arXiv preprint arXiv:2107.03781 (2021).

[120] Waleed Reda, Marco Canini, Dejan Kostić, and Simon Peter. 2022.
RDMA is Turing complete, we just did not know it yet!. In USENIX
NSDI.

[121] Redis. 2024. Redis - The Real-time Data Platform. https://redi
s.io/.

[122] Charles Reiss. 2016. Understanding Memory Configurations for In-
Memory Analytics. Ph. D. Dissertation. EECS Department, University
of California, Berkeley. http://www2.eecs.berkeley.edu
/Pubs/TechRpts/2016/EECS-2016-136.html

[123] John C Reynolds. 1993. The discoveries of continuations. Lisp and
symbolic computation 6 (1993), 233–247.

[124] Alessandro Rivitti, Roberto Bifulco, Angelo Tulumello, Marco Bonola,
and Salvatore Pontarelli. 2023. eHDL: Turning eBPF/XDP Programs
into Hardware Designs for the NIC. In ACM ASPLOS.

[125] Daniel Robinson. 2021. Samsung to Bring In-Memory Processing to
Standard DIMMs and Mobile Memory. https://blocksandfil
es.com/2021/08/24/samsung-to-bring-in-memory-
processing-to-standard-dimms-and-mobile-memo
ry/.

[126] Paul D. Rosero-Montalvo, Zsolt István, and Wilmar Hernandez. 2023.
A Survey of Trusted Computing Solutions Using FPGAs. IEEE Access
11 (2023), 31583–31593.

[127] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In USENIX OSDI.

[128] Fabian Schuiki, Michael Schaffner, Frank K Gürkaynak, and Luca
Benini. 2018. A scalable near-memory architecture for training deep
neural networks on large in-memory datasets. IEEE Trans. Comput.
68, 4 (2018), 484–497.

[129] Vivek Seshadri and Onur Mutlu. 2017. Simple operations in memory
to reduce data movement. InAdvances in Computers. Vol. 106. Elsevier,
107–166.

[130] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource
Disaggregation. In USENIX OSDI.

[131] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Yuxin Su, Jiazhen Gu, Hao
Feng, Yangfan Zhou, and Michael R. Lyu. 2023. Ditto: An Elastic and

Adaptive Memory-Disaggregated Caching System. In SOSP.
[132] Jiacheng Shen, Pengfei Zuo, Xuchuan Luo, Tianyi Yang, Yuxin Su,

Yangfan Zhou, and Michael R. Lyu. 2023. FUSEE: A Fully Memory-
Disaggregated Key-Value Store. In USENIX FAST.

[133] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov,
Jim Carrig, John Hugg, and Nathan Bronson. 2020. FlightTracker:
Consistency across Read-Optimized Online Stores at Facebook. In
USENIX OSDI.

[134] Shigeru Shiratake. 2020. Scaling and Performance Challenges of
Future DRAM. In International Memory Workshop (IMW).

[135] David Sidler, ZekeWang, Monica Chiosa, Amit Kulkarni, and Gustavo
Alonso. 2020. StRoM: Smart Remote Memory. In EuroSys.

[136] Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionys-
ios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur
Mutlu. 2021. FPGA-based near-memory acceleration of modern data-
intensive applications. IEEE Micro 41, 4 (2021), 39–48.

[137] Emma M. Stewart, Anna Liao, and Ciaran Roberts. 2016. Open 𝜇PMU:
A Real World Reference Distribution Micro-phasor Measurement
Unit Data Set for Research and Application Development. (2016).

[138] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, RenWang,
and Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine
CXL-Ready Systems and Devices.

[139] Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag
Khandelwal. 2023. PULSE: Accelerating Distributed Pointer-
Traversals on Disaggregated Memory. arXiv:2305.02388 [cs.DC]
https://arxiv.org/abs/2305.02388.

[140] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang,
Hao Xiang, Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao,
Cheng Chen, Hui Zhang, Fei Liu, Shuai Zhang, Xiaoning Ding, and
Jianjun Chen. 2024. Exploring Performance and Cost Optimization
with ASIC-Based CXL Memory. In EuroSys.

[141] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
Persistent Memory and Controlling Them Remotely: An Exploration
of Passive Disaggregated Key-Value Stores. In USENIX ATC.

[142] Fengbin Tu, Yiqi Wang, Zihan Wu, Ling Liang, Yufei Ding, Bongjin
Kim, Leibo Liu, Shaojun Wei, Yuan Xie, and Shouyi Yin. 2022. ReD-
CIM: Reconfigurable digital computing-in-memory processor with
unified FP/INT pipeline for cloud AI acceleration. IEEE Journal of
Solid-State Circuits 58, 1 (2022), 243–255.

[143] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal, and Rachit
Agarwal. 2022. SHORTSTACK: Distributed, Fault-tolerant, Oblivious
Data Access. In USENIX OSDI.

[144] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. 2020. Semeru: A Memory-Disaggregated Managed
Runtime. In USENIX OSDI.

[145] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. 2022. Mem-
Liner: Lining up Tracing and Application for a Far-Memory-Friendly
Runtime. In USENIX OSDI.

[146] Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A Write-
Optimized Distributed B+Tree Index on Disaggregated Memory. In
SIGMOD.

[147] Zhonghua Wang, Yixing Guo, Kai Lu, Jiguang Wan, Daohui Wang,
Ting Yao, and Huatao Wu. 2024. Rcmp: Reconstructing RDMA-Based
Memory Disaggregation via CXL. ACM Transactions on Architecture
and Code Optimization 21, 1 (2024), 1–26.

[148] Zhengrong Wang, Jian Weng, Sihao Liu, and Tony Nowatzki. 2022.
Near-Stream Computing: General and Transparent near-Cache Ac-
celeration. In HPCA. 331–345.

[149] Zhengrong Wang, Jian Weng, Jason Lowe-Power, Jayesh Gaur, and
Tony Nowatzki. 2021. Stream floating: Enabling proactive and decen-
tralized cache optimizations. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 640–653.

https://redis.io/
https://redis.io/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-136.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-136.html
https://blocksandfiles.com/2021/08/24/samsung-to-bring-in-memory-processing-to-standard-dimms-and-mobile-memory/
https://blocksandfiles.com/2021/08/24/samsung-to-bring-in-memory-processing-to-standard-dimms-and-mobile-memory/
https://blocksandfiles.com/2021/08/24/samsung-to-bring-in-memory-processing-to-standard-dimms-and-mobile-memory/
https://blocksandfiles.com/2021/08/24/samsung-to-bring-in-memory-processing-to-standard-dimms-and-mobile-memory/
https://arxiv.org/abs/2305.02388
https://arxiv.org/abs/2305.02388

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yupeng Tang, Seung-seob Lee, Abhishek Bhattacharjee, and Anurag Khandelwal

[150] Ke Xia, Yukui Luo, Xiaolin Xu, and ShengWei. 2021. Sgx-fpga: Trusted
execution environment for cpu-fpga heterogeneous architecture. In
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 301–
306.

[151] Xinfeng Xie, Peng Gu, Yufei Ding, Dimin Niu, Hongzhong Zheng, and
Yuan Xie. 2023. MPU: Memory-centric SIMT Processor via In-DRAM
Near-bank Computing. ACM Transactions on Architecture and Code
Optimization 20, 3 (2023), 1–26.

[152] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling
Liang, Xing Hu, and Yuan Xie. 2021. SpaceA: Sparse matrix vector
multiplication on processing-in-memory accelerator. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 570–583.

[153] Xilinx. 2022. XUP Vitis Network Example (VNx). https://gith
ub.com/Xilinx/xup_vitis_network_example.

[154] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In USENIX OSDI.

[155] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon.
2023. DiLOS: DoNot Trade Compatibility for Performance inMemory
Disaggregation. In EuroSys.

[156] Jie You, Jingfeng Wu, Xin Jin, and Mosharaf Chowdhury. 2021. Ship
Compute or Ship Data? Why Not Both?. In USENIX NSDI. 633–651.

[157] Vinson Young, Chiachen Chou, Aamer Jaleel, andMoinuddin Qureshi.
2018. Accord: Enabling associativity for gigascale dram caches by
coordinating way-install and way-prediction. In ISCA.

[158] Xiangyao Yu, George Bezerra, Andrew Pavlo, Sahana Devadas, and
Michael Stonebraker. 2014. Staring into the abyss: An evaluation
of concurrency control with one thousand cores. Proceedings of the
VLDB Endowment 8 (11 2014).

[159] Zhuolong Yu, Yiwen Zhang, Vladimir Bravermann, Mosharaf Chowd-
hury, and Xin Jin. 2009. NetLock: Fast, Centralized Lock Management
Using Programmable Switches. In SIGCOMM.

[160] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In USENIX NSDI.

[161] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen,
Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF:
Practical Range Query Filtering with Fast Succinct Tries. In SIGMOD.

[162] Qizhen Zhang, Xinyi Chen, Sidharth Sankhe, Zhilei Zheng, Ke Zhong,
Sebastian Angel, Ang Chen, Vincent Liu, and Boon Thau Loo. 2022.
Optimizing Data-Intensive Systems in Disaggregated Data Centers
with TELEPORT. In SIGMOD.

[163] Mark Zhao, Mingyu Gao, and Christos Kozyrakis. 2022. ShEF:
shielded enclaves for cloud FPGAs. In ACM ASPLOS.

[164] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, and Asaf Cidon. 2022. XRP: In-Kernel Storage Functions
with eBPF. In USENIX OSDI.

https://github.com/Xilinx/xup_vitis_network_example
https://github.com/Xilinx/xup_vitis_network_example

	Abstract
	1 Introduction
	2 Motivation and pulse Overview
	2.1 Need for Accelerating Pointer Traversals
	2.2 Shortcomings of Prior Approaches
	2.3 pulse Design Overview

	3 pulse Programming Model
	4 Accelerating Pointer Traversals on a Node
	4.1 pulse Dispatch Engine
	4.2 pulse Accelerator Design

	5 Distributed Pointer Traversals
	6 Evaluation
	6.1 Performance for Real-world Applications
	6.2 Understanding pulse Performance

	7 Future Trends and Research
	8 Related work
	9 Conclusion
	References

