
CORD: Low-Latency, Bandwidth-Efficient and Scalable Release
Consistency via Directory Ordering

Yanpeng Yu
Yale University

New Haven, CT, USA
yanpeng.yu@yale.edu

Nicolai Oswald
Nvidia

Santa Clara, CA, USA
noswald@nvidia.com

Anurag Khandelwal
Yale University

New Haven, CT, USA
anurag.khandelwal@yale.edu

Abstract

Increasingly, multi-processing unit (PU) systems (e.g., CPU-GPU,
multi-CPU, multi-GPU, etc.) are embracing cache-coherent shared
memory to facilitate inter-PU communication. The coherence pro-
tocols in these systems support write-through accesses that place
the data directly at the LLC to enable efficient producer-consumer
communications pervasive in AI/ML workloads. Moreover, release
consistency has emerged as the standard memory model in such
systems due to its programming simplicity and ability to support
high performance. In today’s multi-PU systems, the source pro-
cessor that issues the writes also orders them to enforce release
consistency, even for write-through accesses. Unfortunately, such
source ordering of write-through operations results in unnecessary
communications between the source processor and the LLC direc-
tory, incurring significant performance, interconnect traffic, and
energy overheads for multi-PU applications.

To eliminate such communication, we present cord1, a novel
cache coherence protocol that orders write-through accesses di-
rectly at the cache directory. cord employs several novel mecha-
nisms to minimize the metadata required for ordering traffic while
efficiently scaling to multiple directories. Evaluations atop the gem5
simulator show that compared to source ordering, cord improves
application performance by 24% and reduces traffic by 13% on av-
erage while incurring < 1% storage, area, and power overheads.
Compared to hand-optimized message-passing implementations,
cord observes a mere 3% performance overhead and 6%more traffic
on average with a significantly simpler programming model.

CCS Concepts

• Computer systems organization→Multicore architectures;
Interconnection architectures; Heterogeneous (hybrid) sys-

tems.

Keywords

cache coherence protocol, memory consistency model, heteroge-
neous architecture

1
Consistency ORdered at Directory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731074

ACM Reference Format:

Yanpeng Yu, Nicolai Oswald, and Anurag Khandelwal. 2025. CORD: Low-
Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory
Ordering. In Proceedings of the 52nd Annual International Symposium on
Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3695053.3731074

1 Introduction

The slowdown of Moore’s Law and the end of Dennard Scaling
have driven the rise of a rich ecosystem of heterogeneous pro-
cessing units (PUs). Recent architectures [20, 21, 24, 63] take this
one step further, arguing for tight coupling of multiple PUs (e.g.,
CPUs and GPUs, multiple CPUs or multiple GPUs) to facilitate
low-latency, high-bandwidth inter-PU communication for emerg-
ing big-data workloads such as AI/ML [34, 35, 40, 52, 69, 71] and
high-performance computing [17, 41, 43, 59, 62, 67]. Such archi-
tectures are increasingly adopting cache-coherent interconnects
across PUs, such as NVIDIA’s NVLink-C2C [23], AMD’s Infinity
Fabric [63], ARM’s Advanced Microcontroller Bus Architecture
Coherent Hub Interface (AMBA CHI) [1], and the Compute eXpress
Link (CXL) [24]. These cache-coherent interconnects improve per-
formance for a wide range of inter-PU use-cases [21, 45, 60, 70]
withminimal programming complexity due to programmer-familiar
memory models [28, 32, 42] — in stark contrast to increasingly com-
plex message-passing mechanisms [2, 22] (§3.2).

While multi-PU shared memory is an active area of research,
most approaches have converged on two design aspects (§2). First,
most multi-PU cache coherence protocols [1, 9, 24] have added
support for write-through or write-combining cache policies in
addition to the traditional write-back policy due to their benefits to
producer-consumer communication patterns between PUs, seen in
emerging big data workloads such as AI/ML training and inference.
Second, release consistency has emerged as the standard multi-
PU shared memory model due to its programming simplicity and
performance. For instance, HSA [6, 32] and the NVIDIA PTX [42]
memory models employ release consistency semantics. We defer
the details of release consistency semantics via Acquire, Release,
Acquire-Release, and Relaxed annotations to §2.2.

In today’s multi-PU systems, release consistency is enforced
at the source processor, i.e., the processor issuing the memory
operation — even for write-through accesses committed at the last-
level cache (LLC). For instance, the source processor pipeline must
not issue a Release store until the cache directory acknowledges all
prior write-through accesses in program order using the underlying
cache coherence protocol. Concrete examples include ARM’s AMBA
CHI specification [1] and the CXL 3.0 specification [24], both of
which delegate the enforcement of write-through access ordering
to the source processor via acknowledgment messages (Fig. 1 (left)).

https://orcid.org/0009-0002-8292-935X
https://orcid.org/0009-0009-9272-0518
https://orcid.org/0000-0002-2199-6391
https://doi.org/10.1145/3695053.3731074
https://doi.org/10.1145/3695053.3731074

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

Proc LLC/Dir
Write-Through

Ack
Release

Proc LLC/Dir

Source Ordering Directory Ordering

Release
Write-ThroughTi

m
e

Figure 1: Unlike source ordering (left), cord (right) orders

write-through stores directly at the cache directory, elimi-

nating inefficiencies stemming from acknowledgments.

We refer to this mechanism of enforcing release consistency at the
source processor as source ordering.

Interestingly, we find that the need for acknowledgment mes-
sages for write-through accesses is not fundamental. Indeed, this
requirement is tied to the source-ordering approach of ordering
all memory operations at the source processor, even though write-
through accesses must be committed at the LLC directory. The ad-
ditional acknowledgment messages incur significant interconnect
latency, traffic, and energy overheads for multi-PU applications.
Message-passing protocols such as PCIe 5.0 can facilitate write-
through communication with a release consistency-like program-
ming model while avoiding unnecessary acknowledgment mes-
sages since they order messages at the destination rather than the
source. However, the destination-ordering mechanism of message
passing can only enforce point-to-point release consistency rather
than enforcing such guarantees system-wide. As such, programs
written using message passing in multi-PU systems incur signifi-
cant programmer complexity for implementing release consistency
at an application level. The shortcomings of source-ordering and
message-passing approaches are detailed in §3.

To simultaneously achieve programming simplicity and effi-
ciency, we present cord (Consistency ORdered at Directory), a
novel cache coherence protocol that, as the name suggests, or-
ders write-through accesses at the cache directory — ensuring that
the ordering and commitment of such requests occur at the same
location. This, in turn, avoids the need for superfluous acknowl-
edgment messages between the source processor and the directory
(Fig. 1 (right)).

Realizing directory ordering in cord requires resolving several
unique challenges (§4). First, while adding sequence numbers to
write-through requests offers a natural means for ordering such
requests at the directory, the number of bits allocated to these
sequence numbers introduces interesting trade-offs between the
traffic overhead due to too many added bits in requests and the over-
heads due to overflow handling when the bits are too few. To this
end, cord decouples sequence numbers into coarse-grained epoch
numbers and fine-grained store counters — tailored for release con-
sistency in a way that strikes a balance between performance and
traffic overheads (§4.1).

Second, while ordering requests at the directory eliminates un-
necessary acknowledgment messages, scaling this approach to
a multi-directory system requires careful treatment to preserve
release consistency while ensuring performance scaling. To this
end, cord employs a novel inter-directory notification mechanism,

where directories directly notify each other to signal the comple-
tion of certain store operations, enforcing cross-directory ordering
without involving the processor. This approach not only avoids
processor stalls but also minimizes write-through latency and in-
terconnect bandwidth usage (§4.2).

Finally, the techniques required to ensure low latency and band-
width efficiency in cord also require additional storage at the vari-
ous processors and directories in amulti-PU system. Left unchecked,
this added storage can incur significant area and power overheads
and ultimately render cord impractical. To address this, we employ
a practical resource provisioning technique to upper-bound the
storage overhead for cord (§4.3) without degrading application
performance.

We have verified cord’s correctness using theMurphi [26] model
checker with both classic and customized litmus tests (§4.5). Eval-
uations using the gem5 [14] simulator (§5) show that compared
to the state-of-the-art multi-PU source-ordered cache coherence
protocol, Spandex [9], cord improves end-to-end application per-
formance by 24%, reduces the interconnect traffic by 13% while
incurring < 1% storage, area, and power overheads. Compared to
hand-optimized message-passing implementations, cord observes
a mere 3% performance and 6% traffic overhead on average with a
significantly simpler programming model.

In summary, this paper makes the following contributions:
• We demonstrate the performance and bandwidth inefficiencies
of source ordering and how the point-to-point message-passing
model can violate release consistency in multi-PU systems.

• We propose cord, a novel cache coherence protocol that orders
write-through accesses efficiently at the cache directory using
decoupled sequence numbers, inter-directory notifications, and
bounded storage provisioning.

• We establish cord’s correctness using the Murphi model checker
and demonstrate its benefits (and overheads) over source ordering
and message passing using the gem5 simulator for a wide range
of real-world and synthetic workloads.

2 Background

2.1 Inter-PU Write-Through Cache-Coherence

Recent multi-PU systems [20, 21, 23, 24, 63] are increasingly embrac-
ing cache-coherent shared memory to facilitate inter-PU commu-
nication. For example, NVIDIA’s Grace Hopper Superchip [21, 23]
and AMD’s Accelerated Processing Units (APU) [63] coherently
interconnects CPU and GPU chips on the same motherboard, while
the Compute eXpress Link (CXL) [24] envisions cache-coherent
shared memory across diverse heterogeneous computing devices
at rack-scale or beyond. The broad adoption of cache-coherent
shared memory stems from the flexibility it enables for various
multi-PU use cases, such as CPU-GPU collaborative computing [45],
CPU-CPU shared-everything computing [70], fine-grained GPU
memory oversubscription [21], and CPU-NIC memory sharing [60].
Shared memory also reduces programming complexity compared to
message-passing mechanisms atop PCIe [2] and NVLink [22] since
it frees programmers from orchestrating low-level data movement
across PUs by hiding them under cache coherence protocols.

While traditional CPU cache coherence protocols [4, 10, 27, 29,
53] have mainly employed the write-back policy — where stores

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

are flushed to next-level cache only on eviction to exploit locality
— most inter-PU cache coherence protocols [1, 9, 24] have addi-
tionally employed the write-through (or write-combining) policy,
where stores or atomics are directly propagated to the last-level
cache or main memory. For example, the AMBA CHI specifica-
tion [1] defines the WriteUnique or WriteNoSnp store types for
write-through stores while CXL 3.0 [24]’s CXL.io defines Unordered
IO (UIO) write for the same use.

The popularity of the write-through policy for multi-PU cache
coherence stems from its benefits for various emerging multi-PU
workloads, such as machine learning training and inference, or
other pipeline workloads. Specifically, these workloads often em-
ploy producer-consumer communication between CPU and GPU or
between GPUs, where the write-through policy allows the producer
PU to directly propagate updates to the consumer PU’s memory
hierarchy with minimal latency and traffic.

2.2 Release Consistency

While memorymodels across multiple PUs, such as Nvidia PTX [42]
and theHeterogeneous SystemArchitecture (HSA)memorymodel [6,
32], are an active area of research, most approaches have converged
to provide release consistency or its variants [6, 28, 32, 42]. Release
consistency enjoys a sweet spot between programming simplicity
and performance. It is supported as a software memory model in
various modern languages, including C++, Rust, Java, and OpenCL.
This has driven its broad adoption in multi-PU memory models.

While we refer the reader to [12] for one of many formal defi-
nitions of release consistency, we provide an informal description
of its requirements here. Intuitively, release consistency allows
memory accesses or fences to be annotated with Acquire, Release,
Acquire-Release, or Relaxed labels. Stores, atomics, or fences anno-
tated with Release serve as barriers that prior memory accesses (in
program order) cannot be reordered after. Similarly, loads, atomics,
or fences annotated with Acquire serve as barriers that subsequent
memory accesses (in program order) cannot be ordered before. Fi-
nally, while Acquire-Release accesses serve as a full memory barrier
(i.e., no accesses can be reordered before or after them), Relaxed
accesses do not have any ordering constraints.

3 Motivation

We motivate the need for cord by highlighting the shortcomings
of source ordering (§3.1) and message passing (§3.2) for achieving
release consistency.

3.1 Inefficiencies of Source Ordering

In today’s multi-PU systems, release consistency is enforced at the
source processor even for write-through stores or atomics that are
completed at the last-level cache (LLC). For instance, as per the
Release semantics introduced in §2.2, the source processor must
not issue a Release until the cache-coherence directory has ac-
knowledged the completion of all prior write-through accesses
in program order. For example, the AMBA CHI specification [1]
refers to the ordering between write-through stores as Ordered
Write Observation (OWO), which is enforced by having the cache
directory issue an acknowledge message back to the source proces-
sor for each write-through access (e.g., WriteUnique, WriteNoSnp

PR
SS

SPPA
D

TQ
H
MOCFE

CMC-2D
BigF

FTCR

Applications

0
5

10
15
20
25
30
35
40

pe
rc

en
ta

ge
 (%

) CXL

PR
SS

SPPA
D

TQ
H
MOCFE

CMC-2D
BigF

FTCR

Applications

0

5

10

15

20

25

30

35

40

UPI
Execution Time Traffic

Figure 2: Source ordering’s acknowledgments incur signifi-

cant performance and traffic overheads (§3.1).

or atomics). Similarly, while only supporting IO-coherence, CXL
3.0 [24]’s CXL.io protocol uses Unordered IO (UIO) write transac-
tion to offload the enforcement of write ordering completely to the
source processor using the UIO write completion message. We refer
to this source-based mechanism of enforcing release consistency
for write-through coherence as source ordering.

Unfortunately, a key source of inefficiency in source ordering is
its requirement of orderingwrite-through accesses at the source pro-
cessor, while the completion of these operations is delegated to the
destination cache directory. Specifically, ordering and completing
these accesses at two locations results in significant performance,
traffic, and energy overhead due to the additional acknowledgment
messages from cache directories to processors. Such acknowledg-
ments not only delay Release stores by at least one interconnect
round-trip — degrading performance — but also incur interconnect
traffic (and corresponding energy consumption) proportional to
the communicated data size. To understand how such inefficiencies
affect real-world applications, we broke down source ordering’s
execution time spent waiting for write-through acknowledgments
and the interconnect traffic generated by acknowledgments for our
evaluated applications (details of the applications are deferred to
§5). We evaluate these overheads using simulated CXL [24] and
Intel UPI [33] as the baseline inter-PU interconnects for the system.

Fig. 2 shows that significant performance and traffic overhead are
observed across all applications. Specifically, for CXL, except TQH,
all other applications spend over 10% execution time waiting for
acknowledgments, while except SSSP and TQH all observe over 14%
traffic overhead. CMC-2D, MOCFE, and CR observes even more than
37% slowdown, while PR observes over 36% traffic overhead. Even
though UPI incurs much lower latency, applications still observe
4% − 30% slowdown and 1% − 30% traffic overhead. We conduct a
more in-depth analysis of these overheads in §5.2.

3.2 Message Passing Does Not Provide Release

Consistency

To avoid the performance and traffic overheads incurred by source
ordering’s acknowledgments, message-passing protocols such as
PCIe 5.0 [2] are an alternative mechanism to facilitate inter-PU
write-through communication with a release consistency-like pro-
gramming model. For example, PCIe allows a PU to write through
messages to another PU by using “posted” PCIe-write transactions

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

T 0

T 1 T 2

Y:=rel1
X:=rlx1

Z:=rel1

Y→1
X = 0Y→1

2

3

1

4

5
6

X :=rlx 1
Y :=rel 1

while !(r1:= acqY)
Z :=rel 1

while !(r2:=acq Z)
r3 :=rlx X // 0

T0 T1 T2

Initially, Y=0 Initially, X=Z=0

Figure 3: Message passing allows execution outcome forbid-

den by release consistency for a variant of the ISA2 litmus

test (§3.2). The litmus test program is shown on the right,

and the message-passing execution diagram on the left.

to modify the latter’s memory hierarchy directly, without any ac-
knowledgments. This is because the ordering is directly enforced at
the destination endpoint. PCIe even defines Relaxed Ordering and
Strong Ordering for write transactions, whose ordering rules are
similar to shared memory’s Relaxed and Release stores. However,
such ordering guarantees are restricted to point-to-point commu-
nications and not enforced across all PUs in the system, breaking
release consistency for multi-PU systems.

Indeed, we show that message passing allows outcomes forbid-
den by release consistency for a variant of the classic ISA2 litmus
test [58]. The ISA2 litmus test shown in Fig. 3 (right) employs three
threads𝑇0,𝑇1, and𝑇2, and three variables (𝑋 , 𝑌 , 𝑍 , all initially zero)
where 𝑋 and 𝑍 are mapped to 𝑇2’s memory, while 𝑌 is mapped to
𝑇1’s memory. Fig. 3 (left) shows a possible execution of the text
with message passing, where the three threads pass messages in
a pipelined manner: 𝑇0 first remotely sets 𝑋 in 𝑇2’s memory (1),
then remotely sets 𝑌 in 𝑇1’s memory (2). 𝑇1 first locally polls 𝑌 in
its own memory (3), then remotely sets 𝑍 in 𝑇2’s memory (4). 𝑇2
first locally polls 𝑍 in its own memory (5), then locally loads 𝑋 in
its own memory (6). The message-passing execution in Fig. 3 (left)
shows that even though:

• 𝑇1’s polling on 𝑌 3 must wait for 𝑇0’s message 2 , and,
• 𝑇2’s polling on 𝑍 5 must wait for 𝑇1’s message 4 ,
• 𝑇2’s load 6 need not wait for 𝑇0’s message 1 since 𝑇0 and 𝑇2 do
not employ point-to-point 𝐴𝑐𝑞𝑢𝑖𝑟𝑒-Release synchronization, i.e.,
𝑇2’s 𝑟3 :=𝑟𝑙𝑥 𝑋 can return 0.

However, release consistency forbids such an outcome because 𝑇0
and 𝑇2 perform indirect synchronization through 𝑇1 using 𝑌 and 𝑍
(i.e., it enforces synchronization cumulativity [58]).

A more practical impact of this shortcoming was observed in one
of our evaluated workloads, TQH, from the Chai benchmark [30],
which encounters an error pattern similar to ISA2 with message
passing. As such, we could not even evaluate its performance and
traffic under message passing in §5.2.

Since naive message passing in a multi-PU system breaks re-
lease consistency, careful use of message-passing semantics is re-
quired for correctness. Specifically, programmers must explicitly
orchestrate point-to-point communications in the right order to
preserve release consistency, incurring high programming com-
plexity. Moreover, this complexity will only increase as multi-PU
systems embrace increasingly complex interconnect topologies [25].

This raises the research question: Can we achieve message-passing-
like efficiency while maintaining the programmer-familiar release
consistency model? We answer the question in the affirmative by
presenting cord, a directory-ordered write-through cache coherence
protocol, as detailed in the next section.

4 cord Design

Unlike source ordering, which orders stores at the source proces-
sor using acknowledgments to enforce release consistency, cord
directly orders stores at the destination cache directory.

We begin by detailing how write-through accesses are ordered
at the directory for a single directory system, leveraging epoch
numbers and store counters to maximize performance and mini-
mize traffic overheads (§4.1). We then describe how cord’s novel
inter-directory notification mechanism enables scalable release con-
sistency across multiple directories while minimizing latency and
communication traffic compared to source ordering — the de facto
mechanism for enabling release consistency across multiple directo-
ries (§4.2). Next, we describe how we provision storage resources to
cord data structures to limit its storage overheads in §4.3. Finally,
we describe how we model check its correctness in §4.5.

4.1 Ordering for a Single-directory System

We begin by considering a simple system with a single shared
directory. With a naive approach, ordering write-through stores
at the directory in a single-directory system requires (i) tracking a
sequence number for each request at the source and embedding the
sequence number in the request and (ii) committing the stores at
the directory according to their sequence numbers and consistency
semantic. However, since sequence numbers are fixed-width, once
they reach their limit and are about to overflow, a processor must
stall until all prior sequence numbers are ordered and the sequence
number can be reset. As such, the bit width of the sequence number
exposes a trade-off: small bit-widths incur performance degradation
stemming from frequent overflow handling, while large bit-widths
incur high traffic overheads by inflating the request sizes.

cord breaks this trade-off by decoupling sequence numbers
with epochs and store counters. At a high level, epochs divide logical
time into periods between Release stores, while store counters
track sequence numbers for Release stores between epochs and
are reset at every new epoch. Further, cord embeds the complete
sequence number (i.e., epoch number and store counter) only in the
infrequent Release store requests, while embedding only the epoch
number in the more frequent Relaxed store requests. By employing
small bit-width epoch numbers that do not inflate Relaxed stores
and large bit-width store counters that are infrequently overflowed,
cord can achieve the best of both worlds.

We next illustrate how cord’s epoch numbers and store counters
order write-through stores at the directory, then demonstrate how
our approach breaks the trade-off between performance degrada-
tion and traffic overhead. For demonstration simplicity, we break
down our illustrations along two dimensions: (i) enforcing ordering
between Relaxed and Release stores and (ii) enforcing ordering
between different Release stores. Together, they are necessary and
sufficient to ensure write-through accesses follow release consis-
tency.

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

P0 Dir

X:=
rlx 1Ep=0

Y:=rel1
Ep=0

Cnt=1

Relaxed-Release Ordering

Ep=0
Cnt=1
Ep=1
Cnt=0

Cnt
[P0,0]=1

P0 Dir
Y:=rel1

Ep=1 lastPrevEp=0

Ep=0
Ep=1
Ep=2

X:=
rel 1Ep=0

lastPrevEp=N/A

❌

✓ ✓ largestEp
[P0]=1

❌

✓
Release-Release Ordering

notiCnt
[P0,0]=1

Ep=0
Cnt=[0,1]

P0
X:=rlx1

Ep=0

Dir0 Dir1

ReqNotifyCnt=1

lastPrevEP=N/AEp=0
NotiDst=Dir1

Y:=rel1
NotiCnt=1

Cnt[P0,0]=1

Notify
Ep=0

❌

✓
Multi-Directory Ordering

➊

➋

➍

➌

➎

➏

➐
➑

largestEp
[P0]=0➒

➓

Ep=1
Cnt=[0,0]

⓫

⓬

⓭

⓮

⓯
⓰

Ti
m

e

Figure 4: Examples of cord’s epoch number and store counter (§4.2) for relaxed-release ordering (left) and release-release

ordering (middle), and cord’s inter-directory ordering for multi-directory release consistency (right, §4.2).

Enforcing Relaxed-Release Ordering. Correctness under release
consistency requires preventing reorders between a prior Relaxed
store and a subsequent Release store. To ensure this, each proces-
sor core in cord locally maintains an epoch number (Ep) that is
incremented on each Release store and a store counter (Cnt) that
is incremented on each Relaxed store and reset on each Release
store. Intuitively, each epoch number corresponds to a Release
store, and the store counter tracks the number of Relaxed stores
starting from the last Release store. Each directory also maintains
a mapping from processor core ID and epoch number to store
counters (Cnt[PID, Ep]), which track the number of Relaxed stores
committed at this directory for a specific processor-epoch pair.

Fig. 4 (left) shows a minimal example of how cord enforces
the ordering between a Relaxed store and a subsequent Release
store hosted by the same directory. Specifically, the processor em-
beds only the epoch number in each Relaxed store request (1)
while embedding both the epoch number and store counter in each
Release store request (2). When a Relaxed store arrives at the
directory, the directory immediately commits it and increments its
store counter for the corresponding processor-epoch pair (4). In
contrast, when a Release store arrives at the directory, it can only
commit the store request if its embedded store counter matches the
store counter the directory maintains for the corresponding pro-
cessor and epoch (5). Otherwise, the Release store is stalled (3).
This ensures that a Relaxed store is always committed before a
subsequent Release store if the same directory handles both.

Enforcing Release-Release Ordering. Fig. 4 (middle) shows a
minimal example of how cord enforces the ordering between
two Release stores at the same directory. The store counters men-
tioned above are omitted for demonstration simplicity. Specifically,
within each Release store request, the processor embeds the last
prior epoch number for which the corresponding release store has
been issued to the destination directory but has not been acknowl-
edged (lastPrevEp; 6 and 7 ; note that cord still requires Release
stores to be acknowledged). The directory needs to track, for each
processor, the largest committed epoch (largestEp[PID]; 9 and
10). It can commit a Release store only if its embedded last prior
epoch has been committed (9 and 10). Otherwise, the Release
store is stalled (8). This ensures that Release stores are committed
following their program order.

Balancing bandwidth and overflow handling overheads. Since
only the epoch number is embedded in the majority of the traffic
(i.e., Relaxed stores), cord can use low-bit-width representations to
reduce traffic overheads. For instance, our implementation of cord
atop CXL 3.0 adopts an 8-bit epoch number, which can entirely fit
in CXL 3.0 transaction packets’ reserved bits, incurring no traffic
overheads for Relaxed stores. Meanwhile, small epoch numbers
do not cause performance degradation due to frequent overflow
handling since epoch numbers are incremented only on Release
stores, which typically span a few to tens of kilobytes of Relaxed
data stores as shown by our evaluated workloads (§5.2). Overflows
for store counters are even more infrequent, as cord can adopt
sufficiently large store counters given that it only adds overhead
for the infrequent Release store messages. For example, our imple-
mentation employs a 32bit store counter that can support 32GB of
8B stores without overflow while incurring only 4B traffic per each
Release store, which typically spans at least several kilobytes of
Relaxed stores in our evaluated workloads. We empirically show
the benefits of cord’s decoupled epoch numbers and store counters
in §5.3.

4.2 Ordering across Multiple Directories

As most multi-PU systems comprise more than one directory, the
directory-ordering mechanism outlined above must be extended to
multiple directories to enable scalable release consistency semantics
in a multi-directory system. cord adopts a novel inter-directory
notification mechanism to achieve this goal with reduced latency
and traffic compared to source ordering. At a high level, with inter-
directory notification, the directories directly notify each other to
signal the completion of certain stores, enforcing cross-directory
ordering without involving the source processor.

Next, we detail the inter-directory notification mechanism and
discuss why it improves performance and reduces traffic compared
to source ordering.

Inter-directory notification. Fig. 4 (right) shows a minimal exam-
ple of how inter-directory notification enables release-consistent
ordering between a Relaxed and a subsequent Release store at two
different directories. Enforcing Release-Release ordering is similar.
Specifically, when issuing a Release store to a destination directory,
in addition to the epoch number, store counter, and the last prior

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

unacknowledged epoch number (as outlined above), the proces-
sor also embeds a notification counter (NotiCnt; 12), which tracks
the number of other directories (referred as pending directories)
that either has one or more pending Relaxed store(s) in the current
epoch or has one or more unacknowledged Release store(s). This
notification counter indicates to the destination directory that the
current Release store should not be committed before notifications
from all pending directories are received.

Concurrently, the processor sends a “request for notification”
message (13) to each pending directory. This request contains (i)
the number of Relaxed stores in the current epoch for the target
pending directory, (ii) the last unacknowledged epoch for the target
pending directory, (iii) the current epoch number, and (iv) desti-
nation directory of the current Release store (NotiDst). Intuitively,
this message informs the target pending directory about all pending
Relaxed/Release stores up to the current epoch and requests it to
notify the destination directory after it commits all pending stores.

Upon receiving a request for notification, a pending directory
sends a notification to the destination directory (15) after it com-
mits all the pending stores as embedded. The destination direc-
tory can commit a Release store only after its collected number
of notifications for the corresponding processor and epoch num-
ber (notiCnt[PID, Ep]) equals the notification counter embedded in
the Release store message (16). This ensures that a Release store
will not be committed until all prior stores at other directories have
been committed, ensuring release consistency.

Improving performance and reducing traffic. Compared to
source ordering, cord’s inter-directory notification consistently
improves performance (i.e., interconnect round-trips) while reduc-
ing traffic under most scenarios as we evaluated in §5.3. We use
an intuitive example to illustrate these benefits (Fig. 5), where a
processor issues𝑚 Relaxed stores in total to the first 𝑛 − 1 direc-
tories (i.e., Dir0 ...Dir𝑛−2), followed by a Release store to the last
directory (i.e., Dir𝑛−1).

With source ordering (Fig. 5 left), the processor stalls 2 inter-
connect hops to wait for Relaxed store acknowledgments while
the Release store takes 3 interconnect hops to reach the directory.
Source ordering also generates𝑚 + 1 control messages consisting
of all the acknowledgments.

In contrast, with cord’s inter-directory notification (Fig. 5 right),
the source processor does not stall as it does not wait for any ac-
knowledgments. The Release store takes at most two interconnect
hops to reach all directories — one hop for the request for notifi-
cation to be received by all pending directories and one hop for
the actual notification message from the pending directories. As
such, cord enjoys lower processor stall time and store latency com-
pared to source ordering. In the worst case, cord generates 2𝑛 − 1
control messages, i.e., when all directories are pending directories,
requiring 𝑛 − 1 requests for notification, 𝑛 − 1 notifications, and
1 acknowledgment. While this can potentially exceed the number
of messages in source ordering (depending on the workload), we
find that optimized real-world multi-PU applications typically re-
strict their communication fan-out, i.e., a small number of pending
directories, resulting in smaller effective 𝑛. Moreover, real-world
applications employ inter-PU synchronization granularities of at
least a few kilobytes (i.e., large 𝑚) to minimize communication

P0

Xi, i i∈{0…n-2}:=rlx1
⨉ m

Dir0…n-2 Dirn-1

ReqNotify⨉ (n - 1)

Y:=rel1

Notify
⨉ (n - 1)

❌

✓
Inter-Directory Notification

Ack(Y)

P0

Xi, i i∈{0…n-2}:=rlx1
⨉ m

Dir0…n-2 Dirn-1

Y:=rel1

Source Ordering

Ack(Y)

Ack(Xi)
⨉ m

2-hop
stall

3-hop
delay

m + 1
ctrl

msgs
0-hop
stall

2-hop
delay

2n - 1
ctrl msgs

Ti
m

e

Figure 5: Compared to source ordering (left), cord’s inter-

directory notification (right) eliminates processor stall while

reducing write-through delay and traffic overheads for en-

forcing multi-directory release consistency.

overheads. As such, inter-directory notifications’ traffic overhead
is smaller than source ordering for most real-world applications (as
we will show in §5.2).

Algorithm 1 cord protocol at processor.

1: procedure On Relaxed store
2: Embed epoch number to Relaxed store ⊲ §4.1
3: Increment store counter
4: Send Relaxed store to its destination directory

5: procedure On Release store
6: Embed epoch and store counter to Release store ⊲ §4.1
7: Track the current epoch as unacknowledged
8: Increment epoch and reset store counter
9: Embed last unacknowledged epoch to Release store
10: for all pending directories do ⊲ §4.2
11: Send request for notification to the pending directory
12: Embed pending directory count to Release store
13: Send Release store to its destination directory

14: procedure On Release store Ack
15: Mark epoch acknowledged ⊲ §4.1

Algorithm 2 cord protocol at directory.

18: procedure On Relaxed store
19: Commit Relaxed store to LLC ⊲ §4.1
20: Increment store counter

21: procedure On Release store
22: if embedded store counter matches the directory’s

and last unAck-ed epoch committed ⊲ §4.1
and all inter-directory notifications received then ⊲ §4.2

23: Commit Release store to LLC
24: else Retry later

25: procedure On Reqest for Notification
26: if embedded store counter matches the directory’s

and last unAck-ed epoch committed then ⊲ §4.2
27: Send notification to the destination directory
28: else Retry later

29: procedure On Notification
30: Increment notification count ⊲ §4.2

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

Putting it all together.Algorithms 1 and 2 detail the cord protocol
at the processor and directory, respectively.

At the processor, each Relaxed store request is embedded with
the epoch number and triggers the increment of the store counter
(lines 2-3). Conversely, each Release store request is embedded
with the epoch number, store counter, the last unacknowledged
epoch number, and the pending directory count (lines 6,9,12). The
Release store also triggers an increment of the epoch number, a
reset of the store counter, and a potential inter-directory request
for notification (lines 7, 8, 10-11).

At the directory, Relaxed stores can be immediately committed
to LLC (line 19) while each Release store can be committed if and
only if (i) its embedded store counter matches the one maintained
by the directory, (ii) the source processor’s last unacknowledged
epoch has been committed, and (iii) all inter-directory notifications
are collected (line 22). In addition, a request for notification trig-
gers a notification to be sent to the destination directory when all
Relaxed and Release stores are committed at the current pending
directory (line 26).

4.3 Bounding cord’s Storage Overhead

cord introduces storage overheads due to the data structures that
track protocol states at the processor core and the directory. While
§4.1 and §4.2 described how these data structures are used, we
now detail their micro-architectural implementations and how we
bound their storage overheads.

Implementing data structures in cord. As shown in Fig. 6 (left),
each processor maintains three data structures: the current epoch
number, the store counters for each directory in the current epoch,
and the unacknowledged epoch numbers for each directory. All
structures are implemented as look-up tables except for the epoch
number, which is realized as a single counter. The directory also
maintains three data structures: the store counter for each processor
core and each of its epochs, the largest committed epochs for each
processor core, and the notification counter for each processor
core and each of its epochs. All structures in the directory are
implemented per-processor-core with statically partitioned storage
to handle look-up table overflow under worst-case scenarios, as
described next.

Since several structures are maintained per epoch, storage for
acknowledged or committed epochs can be reclaimed. Specifically,
the processor removes an unacknowledged epoch entry after it
is acknowledged (after line 15). The directory removes its store
counter and notification counter entry after an epoch is commit-
ted (after line 23) and removes its store counter entry after the
notification is sent for an epoch (after line 27). This ensures that
the storage for cord does not accumulate indefinitely. Moreover,
as we show next, we also upper-bound cord’s consumed storage
in practice.

Bounding storage overheads.While storage can be reclaimed for
expired epochs, in the worst case, they still consume asmany entries
as the total number of epochs, potentially leading to large storage
overheads. For example, assuming the epoch number is 8 bits, the
store counter table at the directory would need to hold 256 entries
in the worst case, i.e., to handle the case where 256 consecutive

2

TAG DATA
Dir0 42

TAG DATA
Dir2 0

Dir1 24

Dir2 1

Proc. Core Structures

unack-ed epochs

store counters

epoch number
Directory Structures

TAG
store counters

epoch=1
DATA

12

TAG
notification counters

epoch=1
DATA

0

N/A
largest comm. epochs

Proc0 Proc1 Proc2

Core L1i
CPU Host

L1d L2

DRAMCXL Switch/
UPI network

Directory
LLC slice

CORD

CXL/UPI port
CORD

Figure 6: Micro-architectural implementation of our data

structures at the processor core and directory (left, §4.3), and

simulated system architecture (right, §5.1).

Release stores from the same processor arrive at the directory in
complete reverse order. Assuming 64 processor cores in the system
and 4-byte store counters, each directory would consume over 64KB
storage, which is prohibitively large.

However, such worst-case scenarios are extremely rare — indeed,
they did not occur for any of our evaluated workloads and systems
(§5.2). For context, a complete reversal of order across 256 consecu-
tive Release stores, even for a workload that issues Release store
every 1𝑛𝑠 , requires that the first and last Release store’s transmis-
sion time over the interconnect differ by 256ns. Not only is the total
interconnect latency for even higher latency interconnects like CXL
3.0 only 150ns [39], but no practical multi-PU workload would issue
Release stores as frequently (see Table 2 for a characterization of
popular workloads). Indeed, we validate this observation for both
real-world workloads and synthetic worst-case benchmarks over
diverse system configurations in §5.4.

As such, cord provisions sufficient storage for practical scenar-
ios while guaranteeing correctness for the worst-case scenario by
stalling. Specifically, cord processors stall Release stores if they
detect that such a store will overflow any look-up tables. In more
detail, before a processor issues a Release store, it (i) checks locally
whether the unacknowledged epoch table has an available entry,
and (ii) checks whether its destination directory’s store counters
and notification counters have an available entry, by comparing the
storage statically allocated to the initiating processor and the stor-
age upper-bound required by the total number of unacknowledged
Release stores. The Release store is stalled if either check fails until
sufficient space becomes available via the completion of pending
Release stores.

4.4 Interactions with Other Memory Accesses

While cord targets efficient ordering between write-through stores,
it must also ensure the ordering between them and other memory
accesses such as write-back stores, loads, barriers, and instructions
with data, address, or control dependencies. We now detail how
cord enforces such ordering.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

Write-back stores. cord does not change ordering for write-back
stores — they are still source-ordered with any (necessary) mem-
ory accesses. The only exception is enforcing ordering between an
earlier directory-ordered Relaxed write-through store and a subse-
quent Release write-back store. This is because the former does not
have an acknowledgment and thus cannot be source-ordered with
the latter. In this case, the processor injects an additional directory-
ordered Release barrier after the former and stalls until the barrier
is acknowledged before it issues the latter.

Loads. cord does not change ordering for loads — Relaxed loads
are source-ordered with subsequent Release stores and preceding
Acquire loads using acknowledgments, while Acquire loads are
source-ordered with subsequent memory accesses.

Barriers. cord requires additional handling for memory barriers to
order write-through stores. We implemented three types of memory
barriers with cord: Acquire, Release, and sequentially-consistent.
Specifically, in addition to ordering regular accesses such as write-
back stores and loads, a Release or sequentially-consistent barrier
requires the processor to broadcast an “empty” directory-ordered
Release store to all pending directories and wait for their acknowl-
edgments. An Acquire barrier, on the other hand, does not need
additional handling beyond a regular Acquire barrier because it al-
ready ensures the completion of all preceding loads, which suffices
for Acquire’s semantics even in the presence of directory-ordered
stores.

Dependencies. To enforce instruction dependencies (address, data,
and control), we conservatively inject full memory barriers be-
tween dependentmemory operations to ensure completion, without
adding custom logic to cord. A variety of fine-grained dependency
enforcement techniques in out-of-order processors [55] can poten-
tially improve cord’s performance; we leave their exploration for
future work.

4.5 Correctness

We have model-checked cord using the Murphi [26] model checker.
Like many prior works on cache coherence validation [18, 48–50,
54], our model checker avoids state space explosion by limiting
the validation for up to four addresses, three data values, and four
nodes — each with a private cache and a directory.

Using Murphi, we run 122 Armv8 release consistency litmus
tests generated using the herd tool [7] and additionally run 180
customized litmus tests. We use these customized litmus tests to
cover various design spaces and scenarios that trigger potential
corner cases. For example, our tests cover the scenario where only
some processor cores in the system use cord while other cores
stick to the traditional source ordering, the case where a single
processor core issues both directory-ordered and source-ordered
write-through stores, the case where the processor or directory
look-up table storage is under-provisioned, and the case where
epoch numbers, store counters, or notification counters overflow.
All of our litmus tests have passed, establishing cord’s ability to
enforce release consistency safely, as well as its deadlock-freedom.

Processor

of cores per CPU host 8
of CPU hosts 8
Cache Hierarchy

Private L1I&D caches 64KB/core, 2-way, 2-cycle latency
Private L2 caches 64KB/core, 8-way, 4-cycle latency
Shared LLC cache 64 slices of 2MB, 8-way, 8-cycle latency
Interconnect

Intra-host topology 2 × 4 mesh
Inter-host topology Single switch
Intra-host link latency 10 Cycles
Inter-host link latency 150ns (CXL); 50ns (UPI)
link bandwidth 64GB/s bidirectional
Memory

Size HBM4, 4GB per host
Bandwidth 8 channels, 64GB/s per channel

Table 1: Simulation configuration for all schemes (§5.1).

Suite Name Input Relaxed
Gran.

Release
Gran.

Comm.

Fanout

Pannotia PR olesnik word 5KB High
SSSP wing word 700B High

Chai PAD basket line 1KB Medium
TQH 1024*1024 line 8B-2KB Low
HSTI basket line 1KB Medium
TRNS 1024*1024 line 512B High

DOE MOCFE N/A word/line 8B-256B High
(MPI) CMC-2D N/A line 1B-14KB High

BigFFT N/A word/line 10KB Low
CR N/A line 8B-2KB Low
Table 2: Evaluated benchmarks (§5.1).

5 Evaluation

In this section, we evaluate cord to answer the following questions:
(1) To what extent does cord improve performance and inter-

connect traffic for end-to-end workloads (§5.2)?
(2) What combination of workloads and system settings is cord

most and least useful for? (§5.3)
(3) What are cord’s storage, area, and power overheads? (§5.4)

5.1 Methodology

Simulated architecture. Our simulated multi-PU system mod-
els the hardware-based coherent memory realization across mul-
tiple hosts described in the CXL 3.0 specification [24] as shown
in Fig. 6 (right). It comprises multiple CPU hosts connected via a
CXL switch. Each CPU host consists of a mesh of cores. Each core
employs a core-private L1 data and instruction cache, a core-private
L2 cache, and a slice of shared Last-level cache (LLC) co-located
with its cache directory. The simulated CXL multi-CPU system
parameters are summarized in Table 1. Our simulation models CXL
performance as reported in the recent study from Microsoft [39],
where the round-trip latency between two hosts is an optimistic
∼ 150 ns. Since cord’s benefits are more pronounced at larger in-
terconnect latencies, this reflects a lower bound on its benefits. To

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

0 2 4 6 8

2.02.53.0
CXL

0 2 4 6 8

2.0

2.5

3.0

UPI

0 2 4 6 80.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

No
rm

al
ize

d
Ti

m
e

0 2 4 6 8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

MP CORD SO WB

0 2 4 6 82.03.04.0
0 2 4 6 8

2.0

3.0

4.0

PR
SSSP PAD TQH HSTI

TRNS
MOCFE

CMC-2D
BigFFT CR

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

No
rm

al
ize

d
Tr

af
fic

PR
SSSP PAD TQH HSTI

TRNS
MOCFE

CMC-2D
BigFFT CR

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Figure 7: Performance (top) and traffic (bottom) for cord, source ordering (SO), message passing (MP) and source ordering with

write-back policy (WB) for end-to-end workloads (§5.2). cord outperforms SO by 28% and 20% and is 4% and 2% close to MP

performance for CXL and UPI, respectively. cord reduces SO traffic by 11% and 16% and is 7% and 5% close to MP traffic for CXL

and UPI, respectively. Y-axes are normalized to cord.

evaluate cord’s benefits for interconnect technologies with shorter
latency, we also model Intel UPI [33] latency with the same system
setup.

Workloads.We evaluate multi-PU workloads from multiple bench-
mark suites with diverse usage of write-through stores/atomics
over release consistency, as summarized in Table 2. We use the
Pannotia [16] and Chai [30] benchmarks since they are widely used
in prior works on multi-PU cache coherence protocols [8, 9, 57].
We also use the U.S. Department of Energy (DOE) mini-apps —
scientific computing workloads that use MPI primitives [66] — to
evaluate cord against message passing. We port MPI primitives to
release-consistent shared memory using Relaxed and Releasewrite-
through stores. We evaluate DOE mini-apps using traces since their
source code and binaries are unavailable.

Compared protocols. We compare cord against three design
schemes for multi-PU release consistency: (i) source-ordered write-
through cache coherence protocols (SO); (ii) message passing (MP);
and, (iii) source-ordered write-back cache coherence protocols
(WB)2. For all compared cache coherence protocols, we use their cor-
responding MESI-based implementation provided by Spandex [9],
a state-of-the-art multi-PU cache coherence protocol supporting
flexible cache request interfaces. Our cord implementation is also
MESI-based. For MP, we simulate the PCIe protocol’s read and
write transactions with point-to-point release consistency order-
ing. For cord and MP, the look-up table storage is provisioned as
summarized in Table 3.

2We refer to each scheme by its shorthand for the rest of this section.

5.2 End-to-end Workloads

Performance. Fig. 7 (top) shows that cord consistently outper-
forms SO across most workloads over both CXL and UPI. With
CXL, cord outperforms SO by over 28% on average, while with
UPI, even though its benefits decrease, cord still outperforms SO
by over 20%. cord observes significant performance benefits for
the DOE workloads (i.e., 20–64% faster than SO for MOCFE, CMC-
2D, BigFFT, and CR) because their communication-to-computation
ratios are higher than other workloads.

Compared to MP, cord maintains release consistency across all
CPU hosts at less than 4% and 2% average performance overheads
with CXL and UPI, respectively. Out of the seven workloads (TQH
cannot run with MP as we explained in §3.2), cord performs more
than 1%worse thanMP only for TRNS, MOCFE, and CMC-2D. This is be-
cause their high communication fanout frequently triggers cord’s
inter-directory notification mechanism to ensure cross-PU release
consistency and because their relatively fine-grained synchroniza-
tion cannot subsume the latency incurred by such notifications.

WB observes lower performance than cord for all workloads
except for PR. PR simultaneously exhibits moderate locality so that
WB can benefit performance with data reuse and employs relatively
coarse-grained synchronization, subsuming the high latency of
ordering WB stores at the source (same as SO).

Traffic. Fig. 7 (bottom) shows that cord reduces the inter-PU traffic
compared to SO across various workloads over both CXL and UPI.
In particular, cord reduces traffic compared to SO by over 11% and
16% for CXL and UPI, respectively. In particular, cord reduces traffic
significantly for PR, PAD, CMC-2D, BigFFT and CR workloads (59%

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

0

1

2

0

1

2

Tr
af

fic

8 64 25
6 1K 4K

Store Granularity (B)

0

1

2

3

No
rm

al
ize

d
Ti

m
e CXL

8 64 25
6 1K 4K

0

1

2

3

UPI

64 51
2 4K 32

K
25

6K2M

Sync Granularity (B)

CXL

64 51
2 4K 32

K
25

6K2M

UPI

1 3 7

Communication Fanout (# PUs)

CXL

1 3 7

UPI
MP Time CORD Time SO Time MP Traffic CORD Traffic SO Traffic

Figure 8: Sensitivity to store granularity, synchronization granularity, and communication fanout (§5.3). Execution time (left

y-axis) and traffic (right y-axis) values are normalized by cord’s while x-axes are in log scale. When analyzing sensitivity to a

parameter, we fix the other parameter values: store granularity to 64B, synchronization granularity to 4KB, and fanout to 1.

less traffic for PR, 11% − 29% for others). This is because they either
employ fine Relaxed store granularity, making acknowledgment
messages a significant traffic overhead (e.g., PR and BigFFT), or
employ infrequent, coarse-grained synchronization (i.e., coarse
Release granularity in Table 2), making cord’s traffic overheads
caused by the inter-directory notification messages small relative to
the total traffic. In contrast, TRNS and MOCFE are the only workloads
for which cord generates more traffic than SO. This is because
their fine-grained synchronization and high communication fanout
trigger a high volume of inter-directory notifications, offsetting the
traffic savings from eliminating write-through acknowledgments.

Compared to MP, cord incurs 7% and 5% additional traffic on
average over CXL and UPI, respectively. Specifically, out of the
seven workloads for which MP can provide release consistency,
cord generates > 5% additional traffic only for two workloads (PAD
and MOCFE) due to their fine-grained synchronization and medium
to high communication fanout, as explained above.

WB generates significantly more traffic than cord for all work-
loads except for SSSP because SSSPwith its input graph wing is the
only workload that simultaneously exhibits moderate locality so
that WB can reduce traffic with data reuse, and employs relatively
coarse-grained synchronization so that cord’s traffic saving from
acknowledgments becomes insignificant.

5.3 Sensitivity Analysis

We conduct sensitivity analysis along three application charac-
teristics: (i) Relaxed store granularity (e.g., word, cache line, or
larger), (ii) synchronization granularity (i.e., communicated data
size per Release store), and (iii) communication fanout (i.e., the
number of other PUs that each PU communicates with). We con-
sider two characteristics of the system: (i) the interconnect latency
and (ii) cord’s epoch number and store counter bit-width. We use a
micro-benchmark that launches a single thread to repeatedly issue
write-through stores to other CPU hosts’ memorywith configurable
store granularity, synchronization granularity, and communication
fanout. Note that while most multi-PU cache coherence protocols
allow at most 64B stores, we measure store granularity to up to
4KB since protocols are visioning larger angularities (e.g., CXL 3.0’s

256B flit). For each configuration, we measure the execution time
and inter-PU traffic. Unless otherwise specified, store granularity
defaults to 64B, synchronization granularity to 2MB, and commu-
nication fanout to 1 CPU host.

Relaxed store granularity. Fig. 8 (left) shows that with larger
Relaxed store granularity (up to 4KB), cord’s performance im-
provements over SO keep increasing — achieving 63% and 50%
lower execution time over CXL and UPI, respectively. This is be-
cause larger Relaxed stores increase data transmission efficiency
since they amortize packetization overheads seen in smaller stores.
In contrast, cord reduces the execution time by one interconnect
round-trip regardless of Relaxed store granularity. As such, cord’s
relative performance benefit increases with larger Relaxed store
granularity. At the same time, cord’s traffic reduction decreases
with larger Relaxed store granularities, reducing to < 10% for 1𝐾𝐵
stores. This is because SO’s acknowledgment messages become a
smaller fraction of total traffic at larger Relaxed store granularities.
Moreover, cord observes no performance or traffic overheads com-
pared to message passing since the inter-directory notification is
never triggered at communication fanout of 1.

Synchronization granularity. Fig. 8 (middle) shows that at larger
synchronization granularities (up to 2MB), cord’s performance
benefits over SO decrease, dropping to < 20% over CXL and UPI
at 256KB. This is because data transmission time dominates the
overall execution time at larger synchronization granularities, min-
imizing the impact of acknowledgment messages. cord’s traffic
reduction over SO first increases slightly with fine-grained syn-
chronization (i.e., 64B), then remains constant at 20% with larger
synchronization granularity. This is because, with fine synchro-
nization granularities, both Relaxed and Release stores contribute
substantially to the total traffic. cord, however, cannot eliminate
the Release store acknowledgments, resulting in lower amortized
traffic reduction. At larger granularity where traffic is dominated
by Relaxed stores, cord reliably reduces traffic proportional to the
communicated data size. As before, cord observes no performance
and traffic overheads compared toMP since there are no notification
messages.

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

SO
 T

ra
ffi

c
No

rm
. t

o
CO

RD
 (b

ar
)

100200300400
Inter-PU Directory Accessing Latency (ns)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

SO
 T

im
e

No
rm

. t
o

CO
RD

 (l
in

e)

Store Granularity (B)
8
64
4K

8
64
4K

100200300400

Sync. Granularity (B)
64
4K
256K

64
4K
256K

100200300400

Comm. Fanout (# PUs)
1
3
7

1
3
7

Figure 9: SO’s execution time normalized to cord (line plot,

left y-axis) and traffic normalized to cord (bar plot, right y-

axis) with different inter-PU directory access latency, under

various application parameters (§5.3).

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

0.8

0.9

1.0

1.1

1.2

0.8
0.9
1.0
1.1
1.2

Tr
af

fic

8 1632
store counter bit-width

0.8
0.9
1.0
1.1
1.2
1.3

No
rm

al
ize

d
Ti

m
e CXL

8 1632
0.8

0.9

1.0

1.1

1.2

1.3

UPI

4 8 16
epoch bit-width

0.8

0.9

1.0

1.1

1.2

1.3

CXL

4 8 16
0.8

0.9

1.0

1.1

1.2

1.3

UPI

SEQ-8 Time
SEQ-8 Traffic

CORD Time
CORD Traffic

SEQ-40 Time
SEQ-40 Time

Figure 10: cord’s epoch and store counter vs. sequence num-

ber (§5.3). x-axes are log-scale. Execution time (left y-axis)

and traffic (right y-axis) are normalized to SEQ-40 and SEQ-8.

The epoch number is fixed at 8 bits in (left), and the store

counter is fixed at 32 bits in (right).

Communication fanout. Fig. 8 (right) shows that with larger com-
munication fanout (up to 7 CPU hosts), cord observes a decreasing
but significant performance benefit (> 25% and > 20% over CXL
and UPI at 7 hosts, respectively) compared to SO. This is because,
at higher communication fanouts, cord’s additional inter-directory
notification messages delay the Release stores, reducing the overall
performance benefit. However, while more notification messages
are generated, these messages do not incur much traffic overhead
with synchronization granularity of 4KB. As a result, the traffic
overhead remains constant at 20%.

Over CXL, cord observes 20% performance overheads compared
to MP at 7 hosts for the same reason its performance benefits over
SO decrease. However, it observes < 5% performance overheads
compared toMP over UPI, the shorter latency significantly lowering
performance degradation caused by inter-directory notifications.
Finally, cord observes∼ 5% traffic overhead compared toMP for the
same reason its traffic reduction compared to SO remains constant.

Impact of inter-PU directory access latency. Fig. 9 shows that
while with shorter inter-PU latency cord’s execution time improve-
ment over SO diminishes, cord still observes reduced execution

2 4 8
Number of PUs

0
10
20
30
40

Pr
oc

 S
to

ra
ge

 (B
) CXL

2 4 8
0

10

20

30

40

UPI

2 4 8
Number of PUs

0

500

1000

1500

Di
r S

to
ra

ge
 (B

)

CXL

2 4 8
0

500

1000

1500

UPI
SSSP PAD PR ATA

Figure 11: cord storage overhead for real-world and synthetic

storage-hungry workloads (§5.4). cord incurs negligible stor-

age overhead at the processor and directory, even scaling

sub-linearly to CPU hosts.

time across various workload characteristics, because compared to
SO, cord can always reduce interconnect hops in the critical path
regardless of workload characteristics. In contrast, cord’s traffic
relative to SO remains constant with shorter inter-PU latency since
both protocols’ interconnect messages to send are unaffected by
latency. We find that cord generates more inter-PU traffic than
SO with synchronization-heavy, high-communication-fanout work-
loads such as the 7-PU configuration in Fig. 9 (right).

Impact of epoch and store counter bit-width. By employing
sufficiently large bit-width store counter (i.e., ≥ 16bits) and small
bit-width epoch (i.e., ≤ 8bits), cord can balance both performance
and traffic overheads. In Fig.10, SEQ-8 and SEQ-40 represent the
baseline 8-bit and 40-bit sequence number ordering approach dis-
cussed in §4.1. cord can simultaneously match the performance of
large bit-width sequence number (i.e., SEQ-40) as processor stalls
for overflow handling are rare and match the traffic of small bit-
width sequence number (i.e., SEQ-8) as small epoch numbers do
not significantly inflate traffic overheads.

5.4 Overheads of cord

Storage.We focus on three workloads that require the most storage
(SSSP, PAD, and PR) along with a synthetic workload that contin-
uously issues the MPI alltoall primitive to broadcast 8B data
(dubbed ATA). ATA represents an extreme workload that consumes
extremely high storage due to its high communication fanout and
very fine-grained synchronization.

As discussed in §4.3, cord adds hardware storage to track proto-
col states at the processor and directory using look-up tables. While
cord can operate correctly with any (≥ 1) number of entries in
each table, under-provisioning table sizes can result in performance
degradation. Our storage overhead results (Fig. 11 and Table 3) show
the smallest amount of storage required to ensure no performance
degradation; this is the amount of storage provisioned across all
other evaluations.

Fig. 11 shows that the processor storage not only increases sub-
linearly with CPU hosts but is also negligible (< 40B) for all work-
loads over CXL and UPI. While the directory storage overhead in-
creases linearly with more CPU hosts, the most storage-consuming
workload, ATA, only consumes < 1.5KB and ∼ 1.2KB at 8 hosts for

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

2 4 8
Number of PUs

0
10
20
30
40

Pr
oc

 S
to

ra
ge

 (B
) CXL

Store Counters
Other Look-up Tables

2 4 8
0

10

20

30

40

UPI

2 4 8
Number of PUs

0

500

1000

1500

Di
r S

to
ra

ge
 (B

)

CXL

Network Buffer
Look-up Tables

2 4 8
0

500

1000

1500

UPI

Figure 12: Storage overhead breakdown for ATA (§5.4). Store

counters dominate storage at the processor, while network

buffers and look-up tables both contribute significantly to

storage and scale sub-linearly at the directory.

Component

Size

(entries)
Area

(𝑚𝑚2)
Power

(𝑚𝑊)
Acc. Energy

(r/w 𝑛𝐽)
Processor (total) 0.066 9.242
store counter 8 0.033 4.621 0.016/0.016

unAck-ed epoch 8 0.033 4.621 0.016/0.016
Directory (total) 0.136 23.454
store counter 8*16 0.045 7.776 0.017/0.021

notification counter 16*16 0.058 11.057 0.017/0.025
largest Comm. epoch 8 0.033 4.621 0.016/0.017
Table 3: Look-up table sizes; area and power overheads.

CXL and UPI, respectively. In comparison, each CPU host employs
8 slices of 2MB LLC, which is four orders of magnitude larger.

Fig. 12 breaks down the storage for ATA, the synthetic work-
load consuming extremely high storage. At the processor, the store
counters consume most of the storage and scale sub-linearly with
more hosts, as it is maintained per directory. The remaining table
for tracking unacknowledged epochs only contributes to a small
constant portion of storage, as its required entries for holding un-
acknowledged Release stores and depend only on the application’s
synchronization granularity and interconnect latency, independent
of the number of hosts. At the directory, both look-up tables and
network buffers to hold recycled Release stores contribute signifi-
cantly to total storage. Both overheads grow sub-linearly with more
CPU hosts. This is because both the look-up tables and network
buffers’ storage depend directly on the total number of recycled
Release stores at the current directory, which scales sub-linearly
with more CPU hosts issuing the MPI alltoall primitive.

Area and power. We used CACTI 7.0 [11] to estimate cord’s
area and power overheads at the processor core and directory,
assuming the 22nm technology. As shown in Table 3, cord incurs
0.066mm2 area and 9.242mW static power at each processor core,
two orders of magnitude smaller than that by a typical server CPU
core [15, 44, 65]. At the directory, cord incurs 0.136mm2 area and
23.454mW static power. In comparison, each CPU host’s LLC slices
and cache directories consume 82.642mm2 area and 1761.256mW
static power as estimated by CACTI 7.0, i.e., cord’s power and area
overheads at the directory are less than 0.2% and 1.3%, respectively.

Our estimated dynamic energy needed to access the lookup
tables ranges from 0.016–0.025nJ. In contrast, CXL 3.0 and PCIe
6.0’s energy use is estimated at 4–5pJ/bit [19, 61] (i.e., 2–2.5nJ for
64B) while writing a 64B cache line into the LLC uses 3.407nJ as
estimated by CACTI 7.0, i.e., cord’s dynamic energy overhead to
transmit a 64B store is < 1% of total energy consumed.

6 cord for TSO memory model

While cord targets release consistency, we study its impact on
workload performance and interconnect traffic under the Total
Store Ordering (TSO) memory model used in x86 systems.

We adopt the same simulation configuration (Table 1) and work-
loads (Table 2) as previous evaluations, modifying all coherence
protocols to enforce TSO rather than release consistency. TSO [51]
preserves program-order across all memory accesses except between
a preceding store and a subsequent load due to the presence of FIFO
store buffers. In our implementation, we modify SO and WB to
source-order all memory accesses rather than only for Acquire and
Release in release consistency, and add a FIFO store buffer in our
simulated processor. We modify cord to enforce store-store order-
ing for all write-through stores with the Release-Release ordering
mechanism as described in §4.1, while other memory accesses are
still source-ordered (see §4.4). While message-passing protocols
are not known to enforce TSO, we modify MP to totally order all
simulated PCIe read and write transactions as an upper bound for
performance and traffic efficiency. Under TSO:

cord retains its performance improvements but observes

more traffic compared to SO. Fig. 13 (top) shows that under
TSO, cord outperforms SO across most workloads: with CXL, cord
outperforms SO by over 102% on average, and with UPI, cord out-
performs SO by over 73%. TSOmust order all stores, providing cord
with significant improvement opportunities by efficiently enforcing
write-through ordering. However, Fig. 13 (bottom) shows that cord
observes higher traffic than SO except for SSSP and PAD, in contrast
to reducing traffic for most workloads under release consistency.
This is because cord must add (1) acknowledgments for write-
through stores under TSO as they must be totally ordered using the
same mechanism as Release stores under release consistency (§4.1),
and (2) inter-directory notification messages (§4.2).

cord, SO and WB observe higher traffic overhead over MP.

Most notably, for PR, MP incurs only 24% and 32% of the traffic
incurred by cord with CXL and UPI, respectively. This is because
MP’s more relaxed point-to-point ordering model allows it to elim-
inate acknowledgments for totally ordered stores, while all other
compared cache coherence protocols require them to enforce TSO
globally.

7 Related Works

We discussed prior approaches for release consistency in multi-PU
systems in §3; we now focus on other research related to cord.

Cache-coherent Multi-PU interconnects. Multi-PU systems in
industry [20, 21, 24, 63] and academia [5, 38, 57, 60] employ cache-
coherent interconnects for application performance and system
efficiency with flexible and simple programming models. Industry

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

0 2 4 6 8
2.03.04.05.0

CXL

0 2 4 6 8

2.0

3.0

4.0

5.0

UPI

0 2 4 6 80.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

No
rm

al
ize

d
Ti

m
e

0 2 4 6 8

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

MP CORD SO WB

0 2 4 6 82.03.04.0
0 2 4 6 8

2.0

3.0

4.0

PR
SSSP PAD TQH HSTI

TRNS
MOCFE

CMC-2D
BigFFT CR

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

No
rm

al
ize

d
Tr

af
fic

PR
SSSP PAD TQH HSTI

TRNS
MOCFE

CMC-2D
BigFFT CR

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 13: Performance (top) and traffic (bottom) under TSO for end-to-end workloads (§6). cord outperforms SO by 102% and

73% and is 3% and 3% close to MP performance for CXL and UPI, respectively, but inflates SO traffic by 8% and 6% for CXL and

UPI, respectively. Y-axes are normalized to cord.

standards include NVIDIA NVLink-C2C [23], AMD Infinity Fab-
ric [63], Arm AMBA CHI [1], CXL [24], Gen-Z (merged to CXL),
CCIX [3], and IBM CAPI [64]. Recent academic works have also
explored cache-coherence across CPUs using programmable net-
works [38]. Our work builds atop these interconnect technologies.

Heterogeneous cache coherence protocols. Prior works have
extensively explored heterogeneous cache coherence design across
multiple PUs, focusing on flexibility [9], performance [31, 37, 56, 68],
hardware overhead [18, 36] and design/verification complexity [13,
18, 47, 50]. However, they either omit write-through policy [18,
50], or support write-through but resort to source ordering when
enforcing certain memory models [9, 13, 31, 36, 37, 47, 56, 68].
Our work aims to improve these proposals for efficient release
consistency with write-through coherence.

Heterogeneous memory models across multiple PUs can be
classified based onwhether or not they introduce the notion of scope,
where a scope defines a cohort of threads within which memory
consistency is enforced. The HSA foundation’s heterogeneous data-
race-free (HRF) [6, 32] and NVIDIA’s PTX [42] memory model
introduce scopes, while the compound memory model [28, 46, 50]
does not. Although our work focuses on release consistency for
its popularity in these models, it is generalizable for efficiently
enforcing other consistency models for write-through coherence.

8 Conclusion

Emerging multi-PU unit systems employ release-consistent shared
memory with write-through coherence. We have shown that the
de facto approach of ordering write-through accesses at the source

processor results in unnecessary application slowdowns and in-
terconnect traffic overheads, while message passing can result in
release consistency violations without careful orchestration. We
presented cord, a novel cache coherence protocol that orders write-
through accesses at the directory for release consistency to improve
performance and reduce traffic. Compared to source ordering, cord
improves performance by 23% and reduces traffic by 16% at < 1%
storage, area, and power overheads.

Acknowledgments

We thank the anonymous ISCA reviewers for their valuable com-
ments and insightful feedback. We would also like to thank David
Nellans, Guillermo Juan Rozas, Gonzalo Brito Gadeschi, and Daniel
Lustig for their feedback on various aspects of this work. This
work was supported in part by the NSF’s awards 2047220, 2112562,
2147946, and a NetApp Faculty Fellowship.

References

[1] 2024. Arm AMBA CHI specification. https://developer.arm.com/documentation/
ihi0050/latest/.

[2] 2024. PCIe specifications. https://pcisig.com/specifications.
[3] 2025. CCIX Consortium. https://www.ccixconsortium.com/.
[4] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. 1988. An Evaluation of

Directory Schemes for Cache Coherence. In Proc. ACM/IEEE ISCA.
[5] Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas FWenisch, John Danskin,

and Stephen W Keckler. [n. d.]. Selective GPU caches to eliminate CPU-GPU
HW cache coherence. In Proc. IEEE HPCA.

[6] Jade Alglave and Luc Maranget. 2016. Towards a Formalization of
the HSA Memory Model in the cat Language. Technical Report. HSA
Foundation. https://hsafoundation.com/wp-content/uploads/2021/02/cat_
ModelExpressions-1.1.pdf

[7] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. (2014).

https://developer.arm.com/documentation/ihi0050/latest/
https://developer.arm.com/documentation/ihi0050/latest/
https://pcisig.com/specifications
https://www.ccixconsortium.com/
https://hsafoundation.com/wp-content/uploads/2021/02/cat_ModelExpressions-1.1.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/cat_ModelExpressions-1.1.pdf

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

[8] Johnathan Alsop, Marc S. Orr, Bradford M. Beckmann, and David A. Wood. 2016.
Lazy release consistency for GPUs. In Proc. IEEE/ACM MICRO.

[9] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. 2018. Spandex: A Flexible
Interface for Efficient Heterogeneous Coherence. In Proc. ACM/IEEE ISCA.

[10] James Archibald and Jean-Loup Baer. 1986. Cache Coherence Protocols: Eval-
uation Using a Multiprocessor Simulation Model. ACM Trans. Comput. Syst.
(1986).

[11] Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New tools for interconnect exploration
in innovative off-chip memories. ACM Transactions on Architecture and Code
Optimization (TACO) (2017).

[12] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011.
Mathematizing C++ concurrency. SIGPLAN Not. (2011).

[13] Jesse G. Beu, Michael C. Rosier, and Thomas M. Conte. 2011. Manager-client
pairing: A framework for implementing coherence hierarchies. In Proc. IEEE/ACM
MICRO.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News (2011).

[15] John Byrne, Jichuan Chang, Kevin T. Lim, Laura Ramirez, and Parthasarathy
Ranganathan. 2011. Power-efficient networking for balanced system designs:
early experiences with PCIe. In Proc. 4th Workshop on Power-Aware Computing
and Systems.

[16] Shuai Che, Bradford M. Beckmann, Steven K. Reinhardt, and Kevin Skadron.
2013. Pannotia: Understanding irregular GPGPU graph applications. In Proc.
IEEE International Symposium on Workload Characterization (IISWC).

[17] Linchuan Chen, Xin Huo, and Gagan Agrawal. 2012. Accelerating mapreduce on
a coupled cpu-gpu architecture. In Proc. IEEE/ACM SC Conf.

[18] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honar-
mand, Sarita V. Adve, Vikram S. Adve, Nicholas P. Carter, and Ching-Tsun Chou.
2011. DeNovo: Rethinking the Memory Hierarchy for Disciplined Parallelism.
In Proc. 2011 International Conference on Parallel Architectures and Compilation
Techniques.

[19] Dong-Myung Choi, Yikui Dong, Roan Nicholson, Frank Liu, Wenyan Jia, Vadim
Levin, Mike He, Sameer Pradhan, Jieqiong Du, Michael De Vita, Amanda Tran,
Reza Navid, Sitaraman Iyer, and Rui Song. 2024. A 4.6pJ/b 64Gb/s Transceiver
Enabling PCIe 6.0 and CXL 3.0 in Intel 3 CMOS Technology. In Proc. 2024 IEEE
Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).

[20] NVIDIA Corporation. 2024. NVIDIA Grace Blackwell Superchip.
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-
to-power-a-new-era-of-computing.

[21] NVIDIA Corporation. 2024. NVIDIA Grace Hopper Superchip. https://resources.
nvidia.com/en-us-grace-cpu/nvidia-grace-hopper.

[22] NVIDIA Corporation. 2024. NVIDIA NVLink. https://www.nvidia.com/en-
us/design-visualization/nvlink-bridges/.

[23] NVIDIA Corporation. 2024. NVIDIA NVLink-C2C. https://www.nvidia.com/en-
us/data-center/nvlink-c2c/.

[24] CXL Consortium. 2022. CXL 3.0 Specification. https://www.computeexpresslink.
org/download-the-specification.

[25] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024. An Intro-
duction to the Compute Express Link (CXL) Interconnect. ACM Comput. Surv.
(2024).

[26] David L Dill. 1996. The Mur 𝜙 verification system. In Proc. Computer Aided
Verification: 8th International Conference.

[27] J. Dorsey, Shawn Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Braganza,
S. Meyers, E. Fang, and R. Kumar. 2007. An Integrated Quad-Core Opteron
Processor. In IEEE International Solid-State Circuits Conference.

[28] Andrés Goens, Soham Chakraborty, Susmit Sarkar, Sukarn Agarwal, Nicolai
Oswald, and Vijay Nagarajan. 2023. Compound Memory Models. Proc. ACM
Program. Lang. (2023).

[29] J. Goodman and H. Hum. 2004. MESIF: A two-hop cache coherency protocol for
point-to- point interconnects. Technical Report 2004-002. Department of Computer
Science, University of Auckland.

[30] Juan Gómez-Luna, Izzat El Hajj, Li-Wen Chang, Víctor García-Floreszx, Si-
mon Garcia de Gonzalo, Thomas B. Jablin, Antonio J. Peña, and Wen-mei Hwu.
2017. Chai: Collaborative heterogeneous applications for integrated-architectures.
In Proc. IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS).

[31] Blake A. Hechtman, Shuai Che, Derek R. Hower, Yingying Tian, Bradford M.
Beckmann, Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2014. Quick-
Release: A throughput-oriented approach to release consistency on GPUs. In
Proc. IEEE HPCA.

[32] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster,
Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2014. Heterogeneous-
race-free memory models. In Proc. ACM ASPLOS.

[33] Intel Corporation. 2024. An Introduction to the Intel QuickPath In-
terconnect. https://www.intel.ca/content/dam/doc/white-paper/quick-path-

interconnect-introduction-paper.pdf.
[34] Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren, and Yaoxue

Zhang. 2022. CoDL: efficient CPU-GPU co-execution for deep learning inference
on mobile devices.. In Proc. ACM MobiSys.

[35] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A unified architecture for accelerating distributed {DNN} training in
heterogeneous {GPU/CPU} clusters. In Proc. USENIX OSDI.

[36] Konstantinos Koukos, Alberto Ros, Erik Hagersten, and Stefanos Kaxiras. 2016.
Building Heterogeneous Unified Virtual Memories (UVMs) without the Overhead.
ACM Trans. Archit. Code Optim. (2016).

[37] Snehasish Kumar, Arrvindh Shriraman, and Naveen Vedula. 2015. Fusion: Design
tradeoffs in coherent cache hierarchies for accelerators. In Proc. ACM/IEEE ISCA.

[38] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin Zhong,
and Abhishek Bhattacharjee. 2021. Mind: In-network memory management for
disaggregated data centers. In Proc. ACM SOSP.

[39] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proc. ACM ASPLOS.

[40] Peilong Li, Yan Luo, Ning Zhang, and Yu Cao. 2015. Heterospark: A heterogeneous
cpu/gpu spark platform for machine learning algorithms. In Proc. 2015 IEEE
International Conference on Networking, Architecture and Storage (NAS).

[41] Bin Liu, Dawid Zydek, Henry Selvaraj, and Laxmi Gewali. 2012. Accelerating
high performance computing applications: Using cpus, gpus, hybrid cpu/gpu,
and fpgas. In Proc. 2012 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies.

[42] Daniel Lustig, Sameer Sahasrabuddhe, and Olivier Giroux. 2019. A Formal
Analysis of the NVIDIA PTXMemory Consistency Model. In Proc. ACM ASPLOS.

[43] Michal Marks and Ewa Niewiadomska-Szynkiewicz. 2014. Hybrid CPU/GPU
Platform For High Performance Computing.. In ECMS.

[44] Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J. Jackson,
Yaosheng Fu, Jonathan Balkind, Tri M. Nguyen, Katie Lim, Yanqi Zhou, and
David Wentzlaff. 2018. Power and Energy Characterization of an Open Source
25-Core Manycore Processor. In Proc. IEEE HPCA.

[45] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Comput. Surv. (2015).

[46] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, David A.Wood, and Natalie Enright
Jerger. 2020. A Primer on Memory Consistency and Cache Coherence.

[47] Lena E. Olson, Mark D. Hill, and David A.Wood. 2017. Crossing Guard: Mediating
Host-Accelerator Coherence Interactions. In Proc. ACM ASPLOS.

[48] Nicolai Oswald, Vijay Nagarajan, and Daniel J Sorin. 2018. ProtoGen: Automati-
cally generating directory cache coherence protocols from atomic specifications.
In Proc. ACM/IEEE ISCA.

[49] Nicolai Oswald, Vijay Nagarajan, and Daniel J Sorin. 2020. HieraGen: Auto-
mated generation of concurrent, hierarchical cache coherence protocols. In Proc.
ACM/IEEE ISCA.

[50] Nicolai Oswald, Vijay Nagarajan, Daniel J Sorin, Vasilis Gavrielatos, Theo Olaus-
son, and Reece Carr. 2022. HeteroGen: Automatic synthesis of heterogeneous
cache coherence protocols. In Proc. IEEE HPCA.

[51] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model:
x86-TSO. In 22nd International Conference on Theorem Proving in Higher Order
Logics (TPHOLs).

[52] Saptadeep Pal, Eiman Ebrahimi, Arslan Zulfiqar, Yaosheng Fu, Victor Zhang,
Szymon Migacz, David Nellans, and Puneet Gupta. 2019. Optimizing Multi-GPU
Parallelization Strategies for Deep Learning Training. Proc. IEEE/ACM MICRO
(2019).

[53] Mark S. Papamarcos and Janak H. Patel. 1984. A Low-Overhead Coherence
Solution for Multiprocessors with Private Cache Memories. In Proc. ACM/IEEE
ISCA.

[54] Adarsh Patil, Vijay Nagarajan, Nikos Nikoleris, and Nicolai Oswald. 2023. Āpta:
Fault-tolerant object-granular CXL disaggregated memory for accelerating FaaS.
In Proc. IEEE/IFIP DSN.

[55] David A. Patterson and John L. Hennessy. 1990. Computer architecture: a quanti-
tative approach. Morgan Kaufmann Publishers Inc.

[56] Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford M. Beckmann,
Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2013. Heterogeneous
system coherence for integrated CPU-GPU systems. In Proc. IEEE/ACM MICRO.

[57] Xiaowei Ren, Daniel Lustig, Evgeny Bolotin, Aamer Jaleel, Oreste Villa, and David
Nellans. 2020. HMG: Extending Cache Coherence Protocols Across Modern
Hierarchical Multi-GPU Systems. In Proc. IEEE HPCA.

[58] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.
2011. Understanding POWER multiprocessors (Proc. ACM PLDI).

[59] Gabin Schieffer, Jacob Wahlgren, Jie Ren, Jennifer Faj, and Ivy Peng. 2024. Har-
nessing Integrated CPUg-GPU System Memory for HPC: a first look into Grace
Hopper. In Proc. ICPP.

[60] Henry N. Schuh, Arvind Krishnamurthy, David Culler, Henry M. Levy, Luigi
Rizzo, Samira Khan, and Brent E. Stephens. 2024. CC-NIC: a Cache-Coherent

https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/design-visualization/nvlink-bridges/
https://www.nvidia.com/en-us/data-center/nvlink-c2c/
https://www.nvidia.com/en-us/data-center/nvlink-c2c/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.ca/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf

CORD: Low-Latency, Bandwidth-Efficient and Scalable Release Consistency via Directory Ordering ISCA ’25, June 21–25, 2025, Tokyo, Japan

Interface to the NIC. In Proc. ACM SOSP.
[61] Debendra Das Sharma. 2024. PCI-Express: Evolution of a Ubiquitous Load-Store

Interconnect Over Two Decades and the Path Forward for the Next Two Decades.
IEEE Circuits and Systems Magazine (2024).

[62] Nikolay A Simakov, Matthew D Jones, Thomas R Furlani, Eva Siegmann, and
Robert J Harrison. 2024. First Impressions of the NVIDIA Grace CPU Super-
chip and NVIDIA Grace Hopper Superchip for Scientific Workloads. In Proc.
International Conference on High Performance Computing in Asia-Pacific Region
Workshops.

[63] Alan Smith, Gabriel H. Loh, Michael J. Schulte, Mike Ignatowski, Samuel Naffziger,
Mike Mantor, Mark Fowler Nathan Kalyanasundharam, Vamsi Alla, Nicholas
Malaya, Joseph L. Greathouse, Eric Chapman, and Raja Swaminathan. 2024.
Realizing the AMD Exascale Heterogeneous Processor Vision : Industry Product.
In Proc. ACM/IEEE ISCA.

[64] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. 2015. CAPI: A Coherent
Accelerator Processor Interface. IBM Journal of Research and Development (2015).

[65] Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David R. Kaeli. 2019. Summa-
rizing CPU and GPU Design Trends with Product Data. CoRR (2019).

[66] U.S. Department of Energy. 2014. Characterization of the DOE Mini-apps. https:
//portal.nersc.gov/project/CAL/doe-miniapps.htm.

[67] Jacob Wahlgren, Maya Gokhale, and Ivy B Peng. 2022. Evaluating emerging CXL-
enabled memory pooling for HPC systems. In Proc. 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC).

[68] MoyangWang, Tuan Ta, Lin Cheng, and Christopher Batten. 2020. Efficiently Sup-
porting Dynamic Task Parallelism on Heterogeneous Cache-Coherent Systems.
In Proc. ACM/IEEE ISCA.

[69] Chenyang Zhang, Feng Zhang, Xiaoguang Guo, Bingsheng He, Xiao Zhang,
and Xiaoyong Du. 2020. iMLBench: A machine learning benchmark suite for
CPU-GPU integrated architectures. IEEE Transactions on Parallel and Distributed
Systems (2020).

[70] Mingxing Zhang, Teng Ma, Jinqi Hua, Zheng Liu, Kang Chen, Ning Ding, Fan Du,
Jinlei Jiang, Tao Ma, and Yongwei Wu. 2023. Partial Failure Resilient Memory
Management System for (CXL-based) Distributed Shared Memory. In Proc. ACM
SOSP.

[71] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis.
2022. Distributed hybrid cpu and gpu training for graph neural networks on
billion-scale heterogeneous graphs. In Proc. 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.

https://portal.nersc.gov/project/CAL/doe-miniapps.htm
https://portal.nersc.gov/project/CAL/doe-miniapps.htm

ISCA ’25, June 21–25, 2025, Tokyo, Japan Yanpeng Yu, Nicolai Oswald, Anurag Khandelwal

A Artifact Appendix

A.1 Abstract

There are three artifacts for this paper: (1) a Gem5 implementation
with corresponding benchmarks, datasets, and scripts to reproduce
Figures 2, 7, 8, 9, 10, 11, 12, and 13, (2) a Cacti script to reproduce
Table 3, and (3) a Murphi litmus test suite for model-checking
protocol correctness (§4.5). The artifact requires a Linux server
with 150 GB of disk space, with Docker and Python 3.6+ installed.

A.2 Artifact check-list (meta-information)

• Program: Gem5, Murphi, Cacti, Docker
• Run-time environment: Ubuntu 18.04.5 or higher, Docker,
Python3.6 or higher, gcc 7.5.0.

• Hardware: A Linux System with Intel X86-64 CPU
• Metrics: Execution time, traffic, storage, area, power, and energy
• Output: Figures and tables in the paper, and the corresponding
raw experimental data

• Experiments: A Docker image (for Gem5 experiments) and
scripts are provided to reproduce results. Gem5 experiments may
have minimal (1%-2%) differences due to randomization.

• How much disk space required (approximately)?: 150 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1-1.5 hours
• How much time is needed to complete experiments (ap-

proximately)?: 1-1.5 hours
• Publicly available?: Yes.

A.3 Description

A.3.1 How to access. https://github.com/yale-nova/CORD

A.3.2 Hardware dependencies. A Linux System with Intel X86-
64 CPU and about 150 GB of disk space. Our experiments were
conducted on a server with 96 cores and 376 GB of RAM. Servers
with fewer cores or RAM should work but may result in longer
runtimes than reported in this paper.

A.3.3 Software dependencies. Ubuntu 18.04.5 or higher, Docker,
Python 3.6 or higher (with matplotlib, numpy, pandas), gcc 7.5.0
(higher may work).

A.4 Installation

First, clone the artifact repository:
$: git clone https://github.com/yale-nova/CORD

Then, in the main directory of the repository, execute:
$: ./setup.sh
This script will download a docker image (∼ 15 mins), launch a

Docker container for Gem5 experiments (∼ 5mins), and compile the
Gem5, Cacti, and Murphi implementations (∼ 50 mins). This script
is expected to take 1-1.5 hours. You should see Setup Complete
upon completion.

A.5 Experiment workflow

In the main directory of the repository, execute:
$: ./run.sh

This script will run all Gem5 (∼ 1 hour) and Cacti (∼ 1 sec) evalu-
ations, then run all Murphi litmus tests (∼ 5 mins). This script is
expected to take 1-1.5 hours. You should see a:

All experiments complete
message upon completion.

A.6 Evaluation and expected results

In the main directory of the repository, execute:
$: ./gen_figures.sh

This script will first process all Gem5 and Cacti evaluation results
and place the processed result under plots/ in csv format (∼ 1
min), then plot the processed results and generate the original pdf
figures and csv tables under figures/ (∼ 1 min). This script is
expected to take 2 minutes. You should see Artifact evaluation
complete upon completion.

The generated Gem5 experiment results (Figures 2, 7, 8, 9, 10,
11, 12, and 13) may have small (1%-2%) differences with the original
figure in the paper due to simulator randomization. The generated
Cacti experiment result (Table 3) should be identical to that in the
paper. The Murphi model checking is passed if run.sh outputs
Murphi for model checking complete.

A.7 Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://cTuning.org/ae

https://github.com/yale-nova/CORD
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Background
	2.1 Inter-PU Write-Through Cache-Coherence
	2.2 Release Consistency

	3 Motivation
	3.1 Inefficiencies of Source Ordering
	3.2 Message Passing Does Not Provide Release Consistency

	4 cord Design
	4.1 Ordering for a Single-directory System
	4.2 Ordering across Multiple Directories
	4.3 Bounding cord's Storage Overhead
	4.4 Interactions with Other Memory Accesses
	4.5 Correctness

	5 Evaluation
	5.1 Methodology
	5.2 End-to-end Workloads
	5.3 Sensitivity Analysis
	5.4 Overheads of cord

	6 cord for TSO memory model
	7 Related Works
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

