
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

Confluo: Distributed Monitoring and
Diagnosis Stack for High-speed Networks

Anurag Khandelwal, UC Berkeley; Rachit Agarwal, Cornell University;
Ion Stoica, UC Berkeley

https://www.usenix.org/conference/nsdi19/presentation/khandelwal

Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks

Anurag Khandelwal
UC Berkeley

Rachit Agarwal
Cornell University

Ion Stoica
UC Berkeley

Abstract
Confluo is an end-host stack that can be integrated with
existing network management tools to enable monitoring
and diagnosis of network-wide events using telemetry data
distributed across end-hosts, even for high-speed networks.
Confluo achieves these properties using a new data struc-
ture — Atomic MultiLog— that supports highly-concurrent
read-write operations by exploiting two properties specific
to telemetry data: (1) once processed by the stack, the data
is neither updated nor deleted; and (2) each field in the data
has a fixed pre-defined size. Our evaluation results show that,
for packet sizes 128B or larger, Confluo executes thousands
of triggers and tens of filters at line rate (for 10Gbps links)
using a single core.

1 Introduction
Recent years have witnessed tremendous progress on (the
notoriously hard problem of) network monitoring and diag-
nosis by exploiting programmable network hardware [1–18].
This progress has been along two complementary dimen-
sions. First, elegant data structures and interfaces have been
designed that enable capturing increasingly rich telemetry
data at network switches [1–6,10,13–17]. On the other hand,
recent work [6–12] has shown that capitalizing on the bene-
fits of above data structures and interfaces does not need to
be gated upon the availability of network switches with large
data plane resources — switches can store a small amount
of state to enable in-network visibility, and can embed rich
telemetry data in the packet headers; individual end-hosts
monitor local packet header logs for monitoring spurious
network events. When a spurious network event is triggered,
network operator can diagnose the root cause of the event
using switch state along with packet header logs distributed
across end-hosts [7–10].

Programmable switches have indeed been the enabling
factor for this progress — on design and implementation of
novel interfaces to collect increasingly rich telemetry data,
and on flexible packet processing to embed this data into the
packet headers. To collect these packet headers and to use

them for monitoring and diagnosis purposes, however, we
need end-host stacks that can support:

• monitoring of rich telemetry data embedded in packet
headers, e.g., packet trajectory [7–11], queue lengths [1,
10], ingress and egress timestamps [10], etc. (§2.2);

• low-overhead diagnosis of network events by network
operator, using header logs distributed across end-hosts;

• highly-concurrent low-overhead read-write operations
for capturing headers, and for using the header logs for
monitoring and diagnosis purposes using minimal CPU
resources. The challenge here is that, depending on packet
sizes, monitoring headers at line rate even for 10Gbps
links requires 0.9-16 million operations per second!

Unfortunately, end-host monitoring and diagnosis stacks
have not kept up with advances in programmable hardware
and are unable to simultaneously support these three func-
tionalities (§2.1, §6). Existing stacks that support monitoring
of rich telemetry data (e.g., OpenSOC [19], Tigon [20], Gi-
gascope [21], Tribeca [22] and PathDump [8]) use general-
purpose streaming and time-series data processing systems;
we show in §2.1 that these systems are unable to sustain the
target throughput even for 10Gbps links. This limitation has
motivated design of stacks (e.g., Trumpet [23]) that can mon-
itor traffic at 10Gbps using a single core, but only by limiting
the functionality — they do not support monitoring of even
basic telemetry data like packet trajectory and queue lengths;
we discuss in §2.1 that this is in fact a fundamental design
constraint in these stacks.

Confluo is an end-host stack, designed and optimized for
high-speed networks, that can be integrated with existing
network management tools to enable monitoring and diagno-
sis of network-wide events using telemetry data distributed
across end-hosts. Confluo simultaneously supports the above
three functionalities by exploiting two properties specific to
telemetry data and applications. First, telemetry data has a
special structure: once headers are processed in the stack,
these headers are not updated and are only aggregated over

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 421

long time scales. Second, unlike traditional databases where
each record may have fields of arbitrary size, packet headers
capture a precise protocol with fixed field sizes (e.g., 32-bit
IP addresses, 16-bit port numbers, 16-bit switchIDs [8–10],
16-bit queue lengths [1, 10], 32-bit timestamps [10], etc.)1.

Confluo achieves its goals using a new data structure —
Atomic MultiLog— that exploits the above two properties
of telemetry data to trim down traditional lock-free concur-
rency mechanisms to a bare minimum without sacrificing
correctness guarantees. A MultiLog, as the name suggests,
generalizes traditional logs into a collection of lock-free logs.
Atomic MultiLog uses a collection of such logs, one for each
of the filters and aggregates (for monitoring purposes), one
for each of the materialized views (for diagnosis purposes),
and one for raw header logs. Atomic MultiLogs use the first
property to efficiently maintain an updated view of these logs
upon receiving new headers (each new header may incur
multiple concurrent write operations on Atomic MultiLog
for updating individual logs). Essentially, we show that the
first property allows trimming down the traditional lock-free
concurrency mechanisms to updating two integers per header
(§3); using atomic hardware primitives readily available in
commodity servers, Atomic MultiLog is able to ingest mil-
lions of headers per second using a single CPU core.

As headers are processed in the stack, Confluo also needs
to simultaneously execute monitoring and diagnosis queries
that, in turn, require executing multiple concurrent read op-
erations on Atomic MultiLogs. We show that having fixed
field sizes in packet headers makes it extremely simple to
handle race conditions for concurrent reads and writes over
individual logs within an Atomic MultiLog. Finally, we show
that these two properties allow Atomic MultiLog to not only
achieve highly-concurrent read and write operations but to
also support two strong distributed systems properties. First,
updates to all the individual logs within an Atomic Multi-
Log are visible to the monitoring and diagnosis application
atomically (formal proofs in [24]); and second, atomic snap-
shots of telemetry data distributed across the end-hosts can
be obtained using a simple distributed algorithm (§4).

Confluo implementation is now open-sourced [25], with
an API that is expressive enough to integrate Confluo with
most existing end-host based monitoring and diagnosis sys-
tems [8–11, 23]. We have compiled an exhaustive list of
monitoring and diagnosis applications from these systems;
we show, in [24], that our implementation already sup-
ports all these applications. Evaluation of Confluo using
packet traces from standard generators [26,27], and from real
testbeds [8, 9] shows that, even for 128B packets, Confluo
executes thousands of triggers and tens of filters at line rate
(for 10Gbps links) using a single core. Moreover, for 40Gbps
links and beyond, where multiple cores may be necessary,
Confluo’s performance scales well with number of cores.

1Packet headers can contain arbitrary number of fields, and the number
of fields may vary across each packet; however, each field has a fixed size.

Storm Flink Kafka CorfuDB TimescaleDB BTrDB Confluo

Max. packet rate @ 10Gbps

100K

1M

10M

100M

T
hr

ou
gh

pu
t(

Pa
ck

et
s/

s)

Transactions?
#Cores

7 7 7 3 3 7 7

32 32 32 32 32 32 1

Figure 1: Header ingestion rates (no filters, aggregates, or in-
dexes) for several open-sourced streaming and time-series data
processing systems, and for Confluo, on a single end-host. The
workload uses 64B TCP packets using DPDK’s pktgen tool [28].
Unfortunately, existing systems are unable to sustain write rates for
10Gbps links, even when using 32 cores. Note that: (1) CorfuDB
and TimescaleDB tradeoff write rates for stronger semantics; (2)
BTrDB results use 16B packet prefixes since it does not support
larger entries; (3) Storm and Flink results use Kafka as a data sink
since these systems do not store data. See §2.1 for discussion.

2 Confluo Overview
This section provides an overview of Confluo. We start by
elaborating on the observation that end-host monitoring and
diagnosis stacks have not kept up with increasing network
bandwidths and with advances in programmable network
hardware (§2.1). We then outline Confluo interface, along
with an example on how a network operator can use this in-
terface for monitoring and diagnosis (§2.2). We conclude the
section with a high-level overview of Confluo design (§2.3).

2.1 Motivation
Existing end-host stacks fall short of simultaneously support-
ing the three functionalities outlined in the introduction ei-
ther because they cannot scale to large network bandwidths
(10Gbps and beyond), or do not support monitoring of rich
telemetry data (e.g., packet trajectory, queue lengths, ingress
and egress timestamps, and many others outlined in [10]).
We discuss these challenges next.

Challenges with larger network bandwidths. Existing
end-host monitoring stacks that support rich telemetry data
(e.g., Time Machine [29], Gigascope [21], Tribeca [22]) were
designed for 1Gbps links, with reported performance of 180-
610 Mbit/sec [21] and 20-30k headers/sec [22]. While these
systems are not available for evaluation, they are unlikely to
scale to 10Gbps and higher link bandwidths since this would
require processing 10-100×more headers. To overcome this
limitation, recently developed stacks [8, 9, 19, 20] use open-
source streaming and time-series data processing systems.
However, as shown in Figure 1, these systems are unable to
support write rates at 10Gbps even when using 32 cores. We
believe that the fundamental reason behind this limitation is
that these systems are targeting data types that are too general
— supporting the three functionalities outlined in the intro-
duction with minimal CPU resources requires exploiting the

422 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 1: Confluo’s End-Host API. In addition, Confluo exposes certain API to the coordinator to facilitate distributed snapshot (§4). All
supported operations are guaranteed to be atomic. See §2.2 for definitions and detailed discussion.

API Description

setup_packet_capture(fExpression, sampleRatio) Capture packet headers matching filter fExpression at sampleRatio.

M
on

ito
ri

ng

filterId = add_filter(fExpression) Add filter fExpression on incoming packet headers.
aggId = add_aggregate(filterId, aFunction) Add aggregate aFunction on headers filtered by filterId.
trigId = install_trigger(aggId,condition,period) Install trigger over aggregate aggId evaluating condition every period.
remove_filter(filterId), remove_aggregate(aggId),

uninstall_trigger(trigId)
Remove or uninstall specified filter, aggregate or trigger.

D
ia

gn
os

is

add_index(attribute) Add an index on a packet header attribute.
Iterator<Header> it = query(fExpression,tLo,tHi) Filter headers matching fExpression during time (tLo,tHi).

agg = aggregate(fExpression,aFunction,tLo,tHi)
Compute aggregate aFunction on headers matching fExpression during
time (tLo,tHi).

remove_index(attribute) Remove index for specified packet header attribute.

Table 2: Elements of Confluo filters, aggregates and triggers.

Operator Examples

R
el

at
io

na
l Equality dstPort==80

Range ipTTL<3, srcIP in 10.1.3.0/24
Wildcard dstIP like 192.*.*.1

B
oo

le
an Conjunction srcIP=10.1.3.2 && pktSize<100B

Disjunction dstPort==80 || dstPort==443

Negation protocol!=TCP

A
gg

re
ga

te AVG AVG(ipTTL)

COUNT, SUM COUNT(ecn), SUM(pktSize)
MAX, MIN MIN(ipTOS), MAX(tcpRxWin)

specific structure in network packet headers, especially for
40-100Gbps links where multiple cores may be necessary to
process packet headers at line rate.

Challenges with monitoring rich telemetry data. The
aforementioned limitations of streaming and time-series data
processing systems have motivated custom-designed end-
host monitoring stacks [23, 30–34]. State-of-the-art among
these stacks (e.g., Trumpet [23] and FloSIS [34]) can oper-
ate at high link speeds — Trumpet enables monitoring at line
rate for 10Gbps links using a single core; similarly, FloSIS
can support offline diagnosis for up to 40Gbps links using
multiple cores. However, these systems achieve such high
performance either by giving up on online monitoring (e.g.,
FloSIS) or by applying filters only on the first packet in the
flow (e.g., Trumpet). This is a rather fundamental limitation
and severely limits how rich telemetry data embedded in the
packet headers is utilized — for instance, since header state
(e.g., trajectories or timestamps) may vary across packets,
monitoring and diagnosing network events requires applying
filters to each packet [6, 8, 9, 18]. For instance, if a packet is
rerouted due to failures or bugs, its trajectory in the header
could be used to raise an alarm [8, 9, 18]; however, if this is
not the first packet in the flow, optimizations like those in

Trumpet will fail to trigger this network event2. On the other
hand, if filters were applied to each and every packet, these
systems will observe significantly worse performance.

2.2 Confluo Interface
We now describe Confluo interface. Confluo is designed to
integrate with existing tools that require a high-performant
end-host stack [8,9,11,12,23]. To that end, Confluo exposes
an interface that is expressive enough to enable integration
with most existing tools; we discuss, in [24], that Confluo
interface already allows implementing all applications from
recent end-host monitoring and diagnosis systems.

Confluo operates on packet headers, where each header
is associated with a number of attributes that may be
protocol-specific (e.g., attributes in TCP header like srcIP,
dstIP, rwnd, ttl, seq, dup) or custom-defined (e.g.,
packet trajectories [8, 9, 11], or queue lengths [1, 10], times-
tamps [10], etc.). Confluo does not require packet headers to
be fixed; each header can contain arbitrary number of fields,
and the number of fields may vary across each packet.

API. Table 1 outlines Confluo’s end-host API. While Con-
fluo captures headers for all incoming packets by default, it
can be configured to only capture headers matching a filter
fExpression, sampled at a specific sampleRatio.

Confluo uses a match-action language similar to [8, 23]
with three elements: filters, aggregates and triggers. A filter
is an expression fExpression comprising of relational and
boolean operators (Table 2) over an arbitrary subset of header
attributes, and identifies headers that match fExpression.
An aggregate evaluates a computable function (Table 2) on
an attribute for all headers that match a certain filter expres-
sion. Finally, a trigger is a boolean condition (e.g., <, >,
=, etc.) evaluated over an aggregate.

2For some applications, detecting such cases may be necessary due to
privacy laws. The canonical example here is that of a bug leading to in-
correct packet forwarding and violating isolation constraints in datacenters
storing patient information — patient data from two healthcare providers
must never share the same network element due to HIPAA laws [35, 36]

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 423

E1 E2 E3 E4

S S′

flow1 flow2 Scenario Monitoring Diagnosis

flow1 rate+flow2 rate > bandwidth,
flow1 priority = flow2 priority
Packet drops for flow1, flow2 at S

Tracking retransmissions (rtms):
MAXSEQ((maxSeq, maxTs), pkt) {

if (pkt.seqNo > maxSeq)
return (pkt.seqNo, pkt.ts)

else return (maxSeq, maxTs)
}
SEQ,TS=add_aggregate(flow,MAXSEQ)
cond = seqNo<SEQ && ts>TS+tdelay
rtms = add_filter(cond)
R = add_aggregate(rtms, COUNT)
T = add_trigger(R, R>T, 1ms)

t = T.timestamp,
p1 = flow1 priority, p2 = flow2 priority
r1 = flow1 retransmits, r2 = flow2 retransmits,
c1 = aggregate(r1,COUNT,t-1ms,t),
c2 = aggregate(r2,COUNT,t-1ms,t),
check if c1 ≈ c2 > 0 && p1 = p2

flow1 rate+flow2 rate > bandwidth,
flow1 priority < flow2 priority
Packet drops for flow1 at S

t, r1, r2, c1, c2, p1, p2 → Same as above
check if c1 ≈ 0 && c2 > 0 && p1 < p2

or, c2 ≈ 0 && c1 > 0 && p2 < p1
flow1 rate+flow2 rate < bandwidth,
Bug at S drops based on packet timing,
Packet drops for flow1, flow2 at S

ti = Timestamp buckets of packets in rtms,
δi = ti− ti−1 and σδ = STDEV on δi
check if AVG(δi)≈ 100ms && σδ < 1ms

Figure 2: Examples of monitoring and diagnosis of network events in Confluo. See §2.2 for details.

Confluo supports ad-hoc filter queries and aggregates via
indexes on arbitrary packet header attributes. These indexes
serve to speed up diagnostic queries when filters or aggre-
gates have not been pre-defined. We describe the design and
implementation of Confluo indexes, filters, aggregates and
triggers in §3.2 and §3.3.

Examples. Figure 2 shows Confluo functionality using a
simple example comprising three scenarios where switch S
is dropping packets. This example assumes that the monitor-
ing and diagnosis application employing Confluo uses TCP
retransmissions as an indicator of packet loss. A network op-
erator can use Confluo to maintain an aggregate to determine
the latest TCP sequence number SEQ and the corresponding
packet timestamp TS in a flow. The operator then filters out
packets that have TCP sequence number smaller than SEQ
and timestamp larger than TS by a delay threshold (tdelay) as
probable retransmissions. Confluo can then be configured to
trigger an alarm if estimated retransmission count exceeds
a limit. Confluo also allows the operator to issue diagnostic
queries to the relevant end-hosts to determine priorities of
involved flows, their retransmission counts, and periodicity
of retransmissions during the relevant time-period to distin-
guish between the three scenarios based on observed values.

2.3 Confluo Design Overview
We now provide an overview of Confluo design (Figure 3),
that comprises a central coordinator interface and an end-
host module at each end-host in the network.

Coordinator Interface. Confluo’s coordinator interface al-
lows monitoring and diagnosing network-wide events by del-
egating monitoring responsibilities to Confluo’s individual
end-host modules, and by providing the diagnostic informa-
tion from individual modules to the network operator. An op-
erator submits control programs composed of Confluo API
calls to the coordinator, which in turn contacts relevant end-
host modules and coordinates the execution of Confluo API
calls via RPC. The coordinator API also allows obtaining
distributed atomic snapshots of telemetry data distributed
across the end-hosts (§4).

End-host
Module (§3)

Hypervisor
VM2

VM1

VMk

... End-host
Module (§3)

Hypervisor
VM2

VM1

VMk

End-host
Module (§3)

Hypervisor
VM2

VM1

VMk

Coordinator (§4)

NIC

MM

SM

...

RING
BUFFERS

Confluo
Writer

Confluo
Writer

... Confluo
Writer

Confluo Data Structures (Atomic MultiLog)

Confluo
Monitor

Confluo
Diagnoser

Confluo
Archiver

Native Apps

MM = Mirror Module, SM = Spray Module

mirrored headers

or
ig

in
al

pa
ck

et
s

Figure 3: High-level Confluo Architecture (§2).

End-host Module. Confluo conducts bulk of monitoring and
diagnosis operations at the end-hosts. Confluo captures and
monitors packets in the hypervisor, where a software switch
could deliver packets between NICs and VMs. A mirroring
module mirrors packet headers to a spray module, that writes
these headers to one of multiple ring buffers in a round-robin
manner. Confluo currently uses DPDK [37] to bypass the
kernel stack, and Open vSwitch [38] to implement the mirror
and spray modules. This choice of implementation is merely
to perform our prototype evaluation without the overheads
of existing cloud frameworks (e.g., KVM or Xen); our im-
plementation on OVS trivially allows us to integrate Confluo
with these frameworks.

Confluo’s end-host module makes two important archi-
tectural choices. First, as outlined in §1, Confluo optimizes
for highly-concurrent operations, potentially from multiple
cores processing different packet streams, at the end-host.
To that end, Confluo uses multiple ring buffers so that down-
stream modules can keep up with incoming headers. Mul-
tiple Confluo writers read headers from these ring buffers
and write them to Confluo data structures. Achieving high
throughput with multiple Confluo writers requires highly

424 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

concurrent write operations. This is where Confluo’s new
data structure — Atomic MultiLog — makes its key con-
tribution. Recall from §1 that Atomic MultiLog exploits two
unique properties of network logs — append-only workload
and fixed field sizes for each header attribute — to minimize
the overheads of traditional lock-free concurrency mecha-
nisms while providing atomicity guarantees. We describe the
design and implementation of Atomic MultiLogs in §3.

The second architectural decision is to separate threads
that “read” from, and that “write” to Atomic MultiLog.
Specifically, read threads in Confluo implement monitoring
functionality (that requires evaluating potentially thousands
of triggers on each header) and on-the-fly diagnosis func-
tionality (that requires evaluating ad-hoc filters and aggre-
gates using header logs and materialized views). The write
threads, on the other hand, are the Confluo writers described
above. This architectural decision is motivated by two ob-
servations. First, while separating read and write threads in
general leads to more concurrency issues, Atomic MultiLog
provides low-overhead mechanisms to achieve highly con-
current reads and writes. Second, separating read and write
threads also require slightly higher CPU overhead (less than
4% in our evaluation even for a thousand triggers per packet);
however, this is a good tradeoff to achieve on-the-fly diagno-
sis, since interleaving reads and writes within a single thread
may lead to packet drops when complex ad-hoc filters need
to be executed (§3).

Atomic MultiLogs guarantee that all read/write operations
corresponding to an individual header become visible to the
application atomically. However, due to a number of reasons
(e.g., different queue lengths on the NICs during packet cap-
turing, random CPU scheduling delays, etc.), the ordering
of packets visible at an Atomic MultiLog may not necessar-
ily be the same as ordering of packets received at the NIC.
One easy way to overcome this problem, that Confluo nat-
urally supports, is to use ingress/egress NIC timestamps to
order the updates in Atomic MultiLog to reflect the ordering
of packets received at the NIC; almost all current generation
10Gbps and above NICs support ingress and egress packet
timestamps at line rate. Without exploiting such timestamps
or any additional information about packet arrival ordering
at the NIC, unfortunately, this is an issue with any end-host
based monitoring and diagnosis stack.

Distributed Diagnosis. Confluo supports low-overhead di-
agnosis of spurious network events even when diagnosing
the event requires telemetry data distributed across multi-
ple end-hosts [8–11]. Diagnosis using telemetry data dis-
tributed across multiple end-hosts leads to the classical con-
sistency problems from distributed systems — unless all
records (packets in our case) go through a central sequencer,
it is impossible to achieve an absolutely perfect view of the
system state. Confluo does not attempt to solve this classical
problem, but rather shows that by exploiting the properties

of telemetry data, it is possible to simplify the classical dis-
tributed atomic snapshot algorithm to a very low-overhead
one (§4). This is indeed the strongest semantics possible
without all packets going through a central sequencer.

3 Confluo Design
We now describe the design for Confluo end-host module
(see Figure 3), that comprises of packet processing (mirror
and spray) modules, multiple concurrent Confluo writers, the
Atomic MultiLog, Confluo monitor, diagnoser and archival
modules. We discussed the main design decisions made in
the packet processing and writer modules in §2.3. We now
focus on the Atomic MultiLog (§3.1, §3.2) and the remaining
three modules (§3.3, §3.4).

3.1 Background
We briefly review two concepts from prior work that will be
useful in succinctly describing the Atomic MultiLog.

Atomic Hardware Primitives. Most modern CPU archi-
tectures support a variety of atomic instructions. Confluo
will use four such instructions: AtomicLoad, AtomicStore,
FetchAndAdd and CompareAndSwap. All four instructions
operate on 64 bit operands. The first two permit atom-
ically reading from and writing to memory locations.
FetchAndAdd atomically obtains the value at a memory lo-
cation and increments it. Finally, CompareAndSwap atomi-
cally compares the value at a memory location to a given
value, and only if they are equal, modifies the value at the
memory location to a new specified value.

Concurrent Logs. There has been a lot of prior work on
design of efficient, lock-free concurrent logs [39–42] that
exploit the append-only nature in many applications to sup-
port high-throughput writes. Intuitively, each log maintains a
“writeTail” that marks the end of the log. Every new append
operation increments the writeTail by the number of bytes to
be written, and then writes to the log. Using the above hard-
ware primitives to atomically increment the writeTail, these
log based data structure support extremely high write rates.

It is easy to show that by additionally maintaining a “read-
Tail” that marks the end of completed append operations
(and thus, always lags behind the writeTail) and by carefully
updating the readTail, it is possible to guarantee atomicity for
concurrent reads and writes on a single log (see [24] for a for-
mal proof). Using atomic hardware primitives to update both
readTail and writeTail, it is possible to achieve high through-
put for concurrent reads and writes for such logs.

3.2 Atomic MultiLog
An Atomic MultiLog uses a collection of concurrent lock-
free logs to store packet header data, packet attribute indexes,
aggregates and filters defined in §2.2 (see Figure 4). As out-
lined earlier, Atomic MultiLog exploit two unique properties
of network logs to facilitate this:

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 425

<header#1>

<header#2>

...

<header#18>

<header#19>

<header#20>

Raw data

0

54

...

972

1026

1080

Offset

HeaderLog

Attribute
Index

...

Log
Pointers

0, 108, 486, ...

54, 270, 1080, ...

...

NULL

216, 378, 972, ...

Matching
header offsets

IndexLogs

Time
Index

...

Log
Pointers

0, 54, 108, ...

270, 324, 378, ...

1026, 1080, ...

...

Matching
header offsets

0−1 ms

1−2 ms

2−3 ms

...

...

...

...

Thread-local
Aggregates

+
attr1 < 10
&&

attr2 > 1

Filter
Expression

FilterLogs/AggregateLogs
globalReadTail:

globalWriteTail:

1026

1134

Global Tails

Log
Perfect k-ary tree
Incomplete write

Legend

Figure 4: The Atomic MultiLog uses a collection of concurrent lock-free logs to store packet headers, indexes, aggregates and filters (as
defined in §2.2) and efficiently updates these data structures as a single atomic operation as new packet headers arrive. See §3.2 for details.

• Property 1: Packet headers, once processed by the stack,
are not updated and only aggregated over long time scales.

• Property 2: Each packet header attribute has a fixed size
(number of bits used to represent the attribute)

HeaderLog. This concurrent append-only log stores the raw
data for all captured packet headers in Confluo. Each packet
header in the HeaderLog has an offset, which is used as
a unique reference to the packet across all data structures
within the Atomic MultiLog. We will discuss in §3.2.1 how
this simplifies guaranteeing atomicity for operations that
span multiple data structures within the Atomic MultiLog.

IndexLog. An Atomic MultiLog stores an IndexLog for
each indexed packet attribute (e.g., srcIP, dstPort), that
maps each unique attribute value (e.g., srcIP=10.0.0.1 or
dstPort=80) to corresponding packet headers in Header-
Log. IndexLogs efficiently support concurrent, lock-free in-
sertions and lookups using two main ideas.

Protocol-defined fixed attribute widths in packet headers
allow IndexLogs to use a perfect k-ary tree [43] (referred to
as an attribute index in Figure 4) for high-throughput inser-
tions upon new data arrival. Specifically, an n-bit attribute
is indexed using a k-ary tree with a depth of d n

log2ke nodes,
where each node indexes log2k bits of the attribute. For in-
stance, Figure 5 shows an example of a 216-ary tree for IP
addresses, where the root node has 216 child pointers corre-
sponding to all possible values of the 16-bit IP prefix, and
each of its children have 216 pointers for the 16-bit IP suffix.

The use of a perfect k-ary tree greatly simplifies the
write path. All child pointers in a k-ary tree node initially
point to NULL. When a new packet attribute value (e.g.,
srcIP=10.0.0.1) is indexed, all unallocated nodes along

...

0
.
0

0
.
1

2
5
5
.
2
5
5

0
.
0

0
.
1

2
5
5
.
2
5
5

0
.
0

0
.
1

2
5
5
.
2
5
5IP

Suffix

...

0
.
0

0
.
1

2
5
5
.
2
5
5IP

Prefix

N
U
L
L

N
U
L
L

N
U
L
L

N
U
L
L

N
U
L
L

Perfect
k-ary

tree
L

ock-free
L

ogs

Figure 5: 216-ary IndexLog for 32-bit IP address. Each node in
the tree (depth=2) has k=216 children and indexes 16 bits (2 bytes)
of the IP address.

the path corresponding to the attribute value are allocated.
This is where an IndexLog uses the second idea — since
the workload is append-only, HeaderLog offsets for attribute
value to packet header mapping are also append-only; thus,
traditional lock-free concurrent logs can be used to store this
mapping at the leaves of the k-ary tree.

Conflicts among concurrent attribute index nodes and log
allocations are resolved using the CompareAndSwap instruc-
tion, thus alleviating the need for locks. Subsequent packet
headers with the same attribute value are indexed by travers-
ing the tree to the relevant leaf, and appending the headers’s
offset to the log. To evaluate range queries on the index,
Confluo identifies the sub-tree corresponding to the attribute
range (e.g., 10.0.0.0/24); the final result is then the union
of header offsets across logs in the sub-tree leaves.

FilterLog. A FilterLog is simply a filter expression (e.g.,
srcIP==10.0.0.1 && dstPort==80), and a time-indexed

426 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

collection of logs that store references to headers that match
the expression (bucketed along user-specified time intervals).
The logs corresponding to different time-intervals are in-
dexed using a perfect k-ary tree, similar to IndexLogs.

AggregateLog. Similar to FilterLogs, an AggregateLog
employs a perfect k-ary tree to index aggregates (e.g.,
SUM(pktSize)) that match a filter expression across user-
specified time buckets. However, atomic updates on aggre-
gate values is slightly more challenging — it requires read-
ing the most recent version, modifying it, and writing it back.
Maintaining a single concurrent log for aggregates requires
handling complex race conditions to guarantee atomicity.

Confluo instead maintains a collection of thread-local
logs, with each writer thread executing read-modify-write
operations on its own aggregate log. The latest version of an
aggregate is obtained by combining the most recent thread-
local aggregate values from individual logs. We note that the
use of thread-local logs restricts aggregation to associative,
commutative operations, that are sufficient to implement net-
work monitoring and diagnosis functionalities.

3.2.1 Atomic Operations on Collection of Logs
End-to-end Atomic MultiLog operations may require updat-
ing multiple logs across HeaderLog, IndexLogs and Filter-
Logs. Even if individual logs support atomic operations, end-
to-end Atomic MultiLog operations are not guaranteed to be
atomic by default. Fortunately, it is possible to extend the
readTail/writeTail mechanism for concurrent logs to guaran-
tee atomicity for Atomic MultiLog operations; however, this
requires resolving two challenges.

First, in order to guarantee total order for Atomic Mul-
tiLog operations, its component logs must agree on an or-
dering scheme. Confluo uses HeaderLog as single source
of ground truth, and designates its readTail and writeTail
as globalReadTail and globalWriteTail for the Atomic Mul-
tiLog. Before packet headers are written to different ring
buffers, Confluo first atomically increments globalWrite-
Tail by the size of the packet header using FetchAndAdd.
This atomic instruction resolves potential write-write con-
flicts, since it assigns a unique HeaderLog offset to each
header. When Confluo writers read headers from different
ring buffers, they update all relevant logs in Atomic Multi-
Log, and finally update the globalReadTail to make the data
available to subsequent queries.

The globalReadTail imposes a total order among Atomic
MultiLog write operations based on HeaderLog offsets: Con-
fluo only permits a write operation to update the global-
ReadTail after all write operations writing at smaller Head-
erLog offsets have updated the globalReadTail, via repeated
CompareAndSwap attempts. This ensures that there are no
“holes” in the HeaderLog, and allows Confluo to ensure
atomicity for queries via a simple globalReadTail check.
In particular, queries first atomically obtain globalReadTail
value using AtomicLoad, and only access headers and their

Naive
Approach:

Synchronization overhead Useful Work

Atomic

Confluo
Approach:

Time

Figure 6: Confluo relaxes atomicity guarantees of individual logs,
guaranteeing atomicity only for end-to-end Atomic MultiLog oper-
ations. Different colors correspond to operations on different logs.

references (across IndexLogs, FilterLogs and AggregateL-
ogs) if the header lies within the globalReadTail in Header-
Log. Note that since queries do not modify globalReadTail,
they cannot conflict with other queries or write operations.

The second challenge lies in preserving atomicity for op-
erations on Confluo aggregates, since they are not associated
with any single packet header that lies within or outside the
globalReadTail. To this end, aggregate values in AggregateL-
ogs are versioned with the HeaderLog offset of the write op-
eration that updates it. To get the final aggregate value, Con-
fluo obtains the aggregate with the largest version smaller
than the current globalReadTail for each of the thread-local
aggregates. Since each Confluo writer thread modifies its
own local aggregate, and queries on aggregates only access
versions smaller than the globalReadTail, operations on pre-
defined aggregates are rendered atomic.

While the operations above enable end-to-end atomicity
for Atomic MultiLog operations, we note that readTail up-
dates for each individual log in the Atomic MultiLog may
add up to a non-trivial amount of overhead (Figure 6). Con-
fluo alleviates this overhead by observing that in any Atomic
MultiLog operation, the globalReadTail is only updated af-
ter each of the individual log readTails are updated. There-
fore, any query that passes the globalReadTail check trivially
passes the individual readTail checks, obviating the need for
maintaining individual readTails. Removing individual log
readTails relaxes unnecessary ordering guarantees for them,
while enforcing it only for end-to-end operations. This sig-
nificantly reduces contention among concurrent operations.

3.3 Monitor & Diagnoser Modules
We now describe Confluo monitor and diagnoser modules.

Monitor Module. This module is responsible for online
evaluation of Confluo triggers via a dedicated monitor
thread. Confluo triggers operate on pre-defined aggregates
(§2.2) in the Atomic MultiLog. Since the aggregates are up-
dated for every packet, trigger evaluation itself involves little
work. The monitor thread wakes up at periodic intervals, and
first obtains relevant aggregates for intervals since the trigger
was last evaluated, performing coarse aggregations over mul-
tiple stored aggregates over sliding windows. It then checks
if the trigger predicate (e.g., SUM(pktSize)>1GB) is satis-
fied, and if so, generates an alert.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 427

MultiLog#1 MultiLog#2 MultiLog#3 MultiLog#4

p1

p2

p3

p4

p5
p6

p7

Tim
e

pi = Packet Write AtomicLoad(readTail)

(a) Naive approach may lead to inconsistent snapshots

MultiLog#1 MultiLog#2 MultiLog#3 MultiLog#4

p1

p2

p3

p4

p5

p6

p7

Tim
e

pi = Packet Write AtomicLoad(readTail)

(b) Atomic snapshots with delayed packet writes

Figure 7: Simply obtaining (global) readTails for a collection Atomic MultiLogs can yield inconsistent snapshots, as shown in (a), where
AtomicLoad on readTails at different Atomic MultiLogs are skewed in time, and packets p1, p5 appear to be written after p3, p7 (inconsistent).
(b) We can render the same snapshot consistent by delaying completion of p1, p5 until after AtomicLoad on on Atomic MultiLog #4.

Diagnoser Module. Confluo’s diagnoser module serves ad-
hoc queries on packet headers captured by the Atomic Mul-
tiLog. Recall from Table 1 that Confluo allows a diagnostic
query to provide a filter expression fExpression as well as
a time range. If there already exists a filter fExpression,
query execution is fairly straightforward — since Filter-
Logs are time-indexed (Figure 4), Confluo simply looks up
the FilterLog(s) to extract packet header offsets correspond-
ing to the specified time interval, drops the offsets that are
greater than the globalReadTail value, and returns packet
headers corresponding to the remaining offsets. Confluo al-
lows nested queries; Confluo can apply additional filters on
these packet headers or obtain attribute aggregates for them.

If a filter for fExpression specified in the query does
not already exist, Confluo first performs IndexLog lookups
for individual packet attributes in the filter expression (§3.2),
and then combines their results based on the boolean oper-
ators in the expression (Table 2). This can be an expensive
operation; to that end, Confluo uses several optimizations.
For instance, Confluo first converts the filter expression to its
canonical disjunctive normal form (DNF) [44], where the re-
sulting filter expression is a disjunction (OR) of conjunction
(AND) clauses. The DNF form yields the most selective filter
sub-expressions in its conjunction clauses. In order to mini-
mize the number of packet references scanned for a specific
conjunction clause, Confluo uses the tail value for individ-
ual attributes IndexLog as an estimate of their selectivity;
Confluo then evaluates the conjunction clause by scanning
through IndexLog entries for the most selective attribute,
dropping all packet headers that occur after the globalRead-
Tail, or do not satisfy the remaining predicates in the clause.
The results for individual conjunction clauses are combined
using a simple set union for the disjunction operator.

3.4 Archival Module
Confluo stores network logs with rich telemetry data, along
with materialized views, pre-defined filters and aggregates
to support low-overhead monitoring and diagnostic queries.
Storing these logs and materialized views in their raw form
over long time periods would lead to tremendous storage re-

quirements. Confluo overcomes this via periodic archival of
Atomic MultiLog data. Our current implementation employs
a basic approach — an archival thread periodically flushes
packet header entries up to a certain offset in the Header-
Log to secondary storage, along with associated IndexLog,
FilterLog and AggregateLog entries, and ensures that the in-
memory footprint does not exceed a user-configured thresh-
old. While Confluo data structures are amenable to several
approaches that exist for log archival (e.g., periodically sum-
marizing older data with aggregated statistics, log compres-
sion [45–47], compaction [48–50], etc.), a detailed treatment
of the archival process is an interesting future work.

4 Distributed Diagnosis

Confluo Coordinator interface (Figure 3) facilitates monitor-
ing and diagnosis of network-wide events. Recall from §2.3
that operators express monitoring and diagnosis tasks via
control programs composed of Confluo API calls (Table 1).
Based on the control program, the coordinator interface del-
egates tasks to individual end-host modules and collects di-
agnostic information from them. The coordinator interface
facilitates consistent distributed analysis for high-speed net-
works via a distributed atomic snapshot algorithm.

Existing approaches for distributed snapshots either use a
centralized sequencer to order all writes to the system (e.g.,
transaction managers [51–53], log sequencers [54–56]) sim-
plifying global snapshots, or employ algorithms with weak
consistency guarantees (e.g., causal consistency [57]). How-
ever, neither is acceptable for Confluo; the former is infeasi-
ble for high speed networks, while the latter provides weaker
consistency semantics than Confluo end-host stack.

Confluo does not attempt to resolve complex distributed
consistency issues, but instead strives for an efficient dis-
tributed atomic snapshot algorithm. We note that append-
only semantics in Confluo greatly simplify snapshot for indi-
vidual Atomic MultiLogs3. While naively reading readTails
at individual Atomic MultiLogs across multiple end-hosts

3Atomic snapshot of any Atomic MultiLog is trivially obtained by read-
ing its globalReadTail.

428 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Distributed Atomic Snapshot
Obtains the snapshot vector (Atomic MultiLog readTails).
At Coordinator:

1: snapshotVector← /0
2: Broadcast FreezeReadTail requests to all Atomic MultiLogs
3: for each mLog in multiLogSet do
4: Receive readTail from mLog & add to snapshotVector

5: Broadcast UnfreezeReadTail requests to all Atomic MultiLogs
6: for each Atomic MultiLogmLog do
7: Wait for ACK from mLog

8: return snapshotVector

At Each Atomic MultiLog:

On receiving FreezeReadTail request
1: Atomically read and freeze readTail using CompareAndSwap
2: Send readTail value to Coordinator

On receiving UnfreezeReadTail request
1: Atomically unfreeze readTail using CompareAndSwap
2: Send ACK to Coordinator

may not produce an atomic snapshot (Figure 7(a)), it does
hint towards a possible solution.

In particular, atomic distributed snapshot in Confluo re-
duces to the widely studied problem of obtaining a snapshot
of n atomic registers in shared memory architectures [58–
60]. These approaches, however, rely on multiple iterations
of register reads with large theoretical bounds on iteration
counts. While feasible in shared memory architectures where
reads are cheap, they are impractical for distributed settings
since reads over the network are expensive.

Confluo’s atomic distributed snapshot algorithm exploits
the observation that any snapshot can be rendered atomic by
delaying completion of certain writes that would otherwise
break atomicity for the snapshot. For instance, in Figure 7(a),
if we ensure that packet writes p1 and p5 do not complete
until after the globalReadTail read on Atomic MultiLog #4
(dashed line in Figure 7(b)), the original snapshot becomes
atomic since p1 and p5 now appear to be written after p3 and
p7, in line with the actual order of events.

Algorithm 1 outlines the steps involved in obtaining an
atomic snapshot. The coordinator interface first sends out
FreezeReadTail requests to all Atomic MultiLogs in par-
allel. The Atomic MultiLogs then freeze and return the
value of their readTail atomically via CompareAndSwap.
This temporarily prevents packet writes across the Atomic
MultiLogs from completing since they are unable to up-
date the corresponding readTails, but does not affect Con-
fluo queries. Once the coordinator receives all the readTails,
it issues UnfreezeReadTail requests to all the Atomic
MultiLogs, causing them to unfreeze their readTail via
CompareAndSwap. They then send an acknowledgement to
the coordinator interface, allowing pending writes to com-
plete at once. Since the first UnfreezeReadTail message
is sent out only after the last Atomic MultiLog readTail has
been read, all writes that would conflict with the snapshot are
delayed until after the snapshot has been obtained.

The coordinator interface executes the snapshot algorithm

across arbitrary collections of end-hosts based on the pro-
vided control program, and generates a snapshot vector. Note
that while the readTails remain frozen, write operations can
still update HeaderLog, IndexLogs, FilterLogs and Aggre-
gateLogs, but wait for the readTail to unfreeze (up to one net-
work round-trip time) in order to make their effects visible.
As such, write throughput in Confluo is minimally impacted,
but write latencies can increase for short durations. More-
over, since Confluo supports annotating packets with NIC
timestamps to determine ordering (§2.3) before potentially
delaying packet writes, Confluo’s atomic snapshot algorithm
does not affect the accuracy of diagnostic queries.

5 Evaluation
Confluo prototype is implemented in∼ 20K lines of C++. In
this section, we evaluate Confluo to demonstrate:

• Confluo can capture packet headers at line rate (even
for 10Gbps and higher bandwidth links) while evaluating
thousands of triggers and tens of filters with minimal CPU
utilization (§5.1);

• Confluo can exploit rich telemetry data embedded in
packet headers to enable a large class of network moni-
toring and diagnosis applications (§5.2).

5.1 Confluo Performance
We now evaluate Confluo performance on servers with 2×
12-core 2.30GHz Xeon CPUs and 252GB RAM, connected
via 10Gbps links. We used DPDK’s pktgen tool [28] to gen-
erate network traffic composed of TCP packets with 54 byte
headers, IPs drawn from a /24 prefix and ports drawn from 10
common application port values. Our experiments used up to
5 attribute indexes, corresponding to the connection 4-tuple
(source/destination IPs and ports) and the packet timestamp.
We perform all our evaluations with Confluo running in the
user space to avoid the performance bottlenecks out of Con-
fluo implementation (e.g., hypervisor overheads).

Packet Capture. Figure 8(a) shows Confluo peak packet
capture rate as the number of attribute indexes and pre-
defined filters are increased on a single core. Without any fil-
ters or indexes, the Atomic MultiLog is able to sustain ∼ 25
million packets/s per core, with throughput degrading grace-
fully as more filters or indexes are added. The degradation is
close to linear with the number of indexes, since each addi-
tional index incurs fixed indexing overhead for every packet.
The degradation is sub-linear for filters, since additional fil-
ters incur negligible overheads for packets that do not match
them. Interestingly, as we show in [24], monitoring and di-
agnosing even complex network issues only requires a few
filters (often bounded by the number of active flows on a
server) and 1-2 indexes in Confluo.

The packet capture performance indicates that, even when
average packet size is 128B or larger, Confluo can sustain

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 429

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 p

p
s
)

#Attribute Indexes

1 filter
4 filter

16 filters
64 filters

(a) Packet rate with filters, indexes

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 p

p
s
)

#Cores

1 filter
4 filter

16 filters
64 filters

(b) Packet rate with filters only

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8T
h
ro

u
g
h
p
u
t
(m

ill
io

n
 p

p
s
)

#Cores

0 indexes
1 index

2 indexes
4 indexes

(c) Packet rate with indexes only

 0

 20

 40

 60

 80

 100

 0 250 500 750 1000 1250 1500

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Packet Size (bytes)

1 filters
4 filter

16 filters
64 filters

(d) CPU% @ 10Gbps

 0

 20

 40

 60

 80

 100

 0 250 500 750 1000 1250 1500

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Packet Size (bytes)

0 indexes
1 index

2 indexes
4 indexes

(e) CPU% @ 10Gbps

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 10 100 1000

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

#Per-packet Triggers

1 ms
5 ms

10 ms
20 ms

(f) Trigger CPU%

 10

 100

 1000

 10000

 100000

 1 10 100 1000

L
a
te

n
c
y
 (

n
s
)

#Per-packet Triggers

(g) Trigger Latency

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300

D
ia

g
n
o
s
is

 L
a
te

n
c
y
 (

m
s
)

#Captured Packets (millions)

q1
q2
q3
q4
q5

(h) Diagnostic Query Latency

Figure 8: (a) Confluo’s peak packet capture throughput (measured in packets per second or pps) for 64B packets degrades gracefully on
increasing the number of attribute indexes and the number of pre-defined filters; (b, c) the peak throughput scales well with the number of
cores, even as the number of pre-defined filters and indexes are increased. (d, e) At line rate of 10Gbps, Confluo can handle average packet
size as small as 128B with 16 filters and 2 indexes on a single core. (f, g) Confluo can evaluate 1000s of trigger queries with less than 4%
CPU utilization at 1ms intervals, and with latency less than 70µs. (h) Diagnostic query latency in Confluo increases linearly with number of
captured packets in Confluo, and varies across different queries due to differing intermediate result cardinalities and complexity for combining
them. The filters in the figures use the following templates (varying value of A, B, IP, and port for various filters): (q1) packets from VM A
to VM B; (q2) packets to VM A; (q3) packets from VM A on destination port P; (q4) packets between (IP1, P1) and (IP2, P2); and (q5)
packets to or from VM A.

line rate for 10Gbps link using a single core! Real-world
workloads [61] show that average packet size in datacenter
networks is much larger. Confluo is able to ingest such work-
loads on a single core with each of 64 filters, 1000 triggers,
and 5 indexes, updated for each packet. Figure 8(b) and 8(c)
show packet capture scaling with number of cores. We note
that, while packet capture scales well, it is not perfectly lin-
ear; this is due to stalling of globalReadTail updates for Con-
fluo writers that attempt to update the Atomic MultiLog out-
of-order (§3.2). However, the impact of stalling is mitigated
to a great extent due to the use of lock-free primitives, and
the use of a globalReadTail instead of separate readTails for
each log in Atomic MultiLog.

CPU Utilization at 10Gbps. Figure 8(d) and 8(e) show CPU
utilization for Confluo updating data structures, varying with
the packet size for different number of filters and indexes.
Observe that CPU utilization is higher for smaller packet
sizes, since smaller packet sizes at line rate correspond to
higher packet rates. For smaller packet sizes along with 4
indexes and 64 filters, CPU becomes a bottleneck; however,
CPU utilization drops dramatically with fewer filters or in-
dexes. Confluo can scale up its packet capture rate with more
CPU cores, as discussed before.

Evaluating Triggers. Recall from §3.2 that Confluo eval-
uates triggers over pre-defined aggregates, making trigger
evaluation extremely cheap. Figure 8(f) shows that even

when Confluo evaluates 1000 triggers at 1ms time intervals,
the CPU utilization remains < 4% of a single core. This is
because a single trigger evaluation incurs roughly 100ns la-
tency, with latency increasing to 70µs for 1000 triggers4.

Diagnosis Latency. We evaluate Confluo’s diagnostic query
performance using five queries (q1 to q5 outlined in Fig-
ure 8). Since these queries combine results from different
Confluo IndexLogs, query latency depends on intermedi-
ate result cardinalities. Consequently, the query latency in-
creases linearly with the number of captured packets, since
cardinalities of intermediate results also grow linearly with
the latter. As such, Confluo is able to perform complex diag-
nostic queries on-the-fly with sub-second latencies on 100s
of millions of packets (Figure 8(h)).

Atomic Snapshots. To evaluate the overhead of atomic
snapshots in Confluo, we measure percentage decrease in
packet capture rate while periodically performing snapshots
across 1− 8 end-hosts (to emulate diagnostic queries). We
found the impact of atomic snapshots on write rate to be in-
significant — while performing snapshots every 1ms, packet
rate at each end-host drops by < 2%, even as number of
end-hosts in the snapshot is increased from 1 to 8. This re-
sult might be non-intuitive; the reason is that Confluo only

4A 70µs latency over 1ms period may result in as high as 7% CPU
utilization; we believe the discrepancy is because of the reporting frequency
for CPU utilization metrics from the OS.

430 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

blocks updates to the globalReadTail during the snapshot op-
eration — bulk of the writes including those to HeaderLog,
IndexLogs and FilterLogs can still proceed, with entire set of
pending globalReadTail updates going through at once when
the snapshot operation completes.

We note that a diagnostic query that spans multiple servers
would incur the end-host query execution latency shown in
Figure 8(h), as well as the atomic snapshot latency. Since
the snapshot algorithm queries different Atomic MultiLogs
across different end-hosts in parallel, the snapshot is ob-
tained in roughly 1 network round-trip (about ∼ 180µs in
our setup), with slightly higher latencies across larger num-
ber of end-hosts due to skew in queuing and scheduling de-
lays (about 1.2ms for 128 end-hosts). Since network-wide
diagnosis tasks often only involve a very small fraction of a
data center’s end-hosts, Confluo can employ switch metadata
to isolate the end-hosts it needs to query, similar to [9].

5.2 Confluo Applications
We now use Confluo to detect and debug a variety of network
issues in modern data center networks. Our setup (compris-
ing 96 virtual machines and Pica8 P-3297 switches), deploy-
ment and workloads are exactly the same as those in [8, 9],
but with the end-host stack replaced with Confluo. Conse-
quently, our setup inherits (1) in-network mechanisms that
embed switch ID and timestamp at each switch traversed by
a packet in its header, and (2) switch pointers to end hosts
where the telemetry data for packets processed by the switch
are stored. While we present only a subset of Confluo appli-
cations here for brevity, we discuss more applications in [24].

Path Conformance. We demonstrate Confluo’s ability to
quickly monitor and debug path conformance violations by
randomly routing a subset of the packets within a flow via a
particular switch S. Each end-host is configured with a sin-
gle filter that matches packets that passes through switch S.
A companion trigger to the filter raises an alert if the count
of packets satisfying the filter is non-zero. Confluo monitor
evaluates the trigger at 1 ms intervals, and alerts the pres-
ence of path non-conformant packets within milliseconds of
its incidence at the end-host.

Figure 9(a) shows the latency in Confluo with varying
number of path conformance checks (filters). We note that
while a single conformance check incurs average batch la-
tency of 1µs, 100 checks incur 11µs latency; this indicates
sub-linear increase in latency with the number of checks.
As such, Confluo is able to perform per-packet path confor-
mance checks with minimal overheads.

Packet Losses at a Single Switch. In this application, we
consider monitoring and diagnosis for generalized versions
of the scenarios from Figure 2 (left), where k flows compete
at a common output port at switch S and one or more of these
flows experience packet losses. Confluo’s approach is out-
lined in Figure 2 (right). Confluo exploits network telemetry

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12

C
D

F

Batch latency (microseconds)

1 filter
10 filters

100 filters

(a) Path Conformance

0

5

10

15

20

L
at

en
cy

(m
s)

1 2 4 8 16 32 64 128
Number of competing flows (k)

Connection Setup
Atomic Snapshot
Query Execution

(b) Packet Losses at a Single Switch

E1 E2 E3 E4

S S′

flow1 flow2 flow3

Priority(flow1) < Priority(flow2)
Priority(flow2) = Priority(flow3)
Packet drops for flow1 at S, S′

(c) Packet Losses at Multiple Switches

Figure 9: (a) Confluo can perform 100 path conformance checks
and ingest packet headers in batches of size 32 in about 11µs per-
batch (∼ 350ns per-packet); (b) Diagnosis latency for packet losses
due to traffic congestion; most of the time is spent in connection
setup. Confluo takes < 18ms for querying 128 hosts. (c) Setup used
for monitoring and diagnosing packet losses at multiple switches.

data in packet headers (switch IDs and timestamps) to iden-
tify contending TCP flows and their destination end-points.

Confluo is able to detect the presence of packet loss due to
TCP retransmissions in under 1ms (trigger periodicity), and
the coordinator interface receives the alert within ∼ 250µs.
Figure 9(b) shows the diagnosis latency at the coordinator
as the number of competing flows (k) at switch S increases.
With more flows, Confluo has to contact more end-hosts to
collect diagnostic information. Even while collecting diag-
nostic information across 128 end-hosts, the time taken to
obtain the atomic snapshot and performing the diagnostic
query at the coordinator are only 1.2 ms and 3 ms respec-
tively. Most of the diagnosis time is spent in establishing
connections to the relevant end-hosts, although this can be
mitigated via connection pooling. Even so, Confluo is able
to diagnose the issue across 128 hosts in under 18 ms.

Packet Losses at Multiple Switches. We now consider a
scenario where a flow experiences packet losses at multiple
switches, as outlined Figure 9(c). Again, we detect packet
losses using TCP retransmissions, and employ telemetry data
embedded in packet headers (switch IDs) to aid diagnosis.
Using ideas discussed in [8, 9], we issue diagnostic queries
to determine the flow information (IDs, traffic volume and
priorities) that contended with flow1 at switches S and S′.
By comparing the traffic volume and priorities of contending
flows, Confluo concludes that the losses for flow1 are due to
contention with higher priority flow2 and flow3 at switches
S and S′. Confluo takes roughly 1.8ms for the end-to-end di-
agnosis: 1.15ms for connection setup, 180µs for the snap-
shot algorithm and 350µs for performing the actual query.

TCP Outcast. In TCP outcast problem [62], two sets of

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 431

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

M
in

.
#
p
a
c
k
e
ts

/
M

a
x
.
#
p
a
c
k
e
ts

Time (s)

(a) Packet Ratio

30

60

90

T
hr

ou
gh

pu
t(

M
bp

s)

1 5 10 15
Flow ID

(b) Flow Throughput

D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6.
7k

5.5k 5.
1k

5.3k 6.
5k

6.5k 6.
2k 6k

5.
3k

6.3k 5.
6k 5k

12
.2k

10.4k 13
k

12.2k 11
.6k

10.6k

22.6k 25.2k

22.2k70k

4.
7k 5k

9.7k79
.7k

3k

82
.7

k

(c) Packet Distribution across Links

Figure 10: Diagnosing TCP Outcast. (a) Confluo measures the cu-
mulative ratio of smallest and largest packet counts across all flows
at 10ms intervals to diagnose outcast; smallest and largest packet
counts correspond to flows with smallest and largest hop-counts re-
spectively, with their ratio stabilizing to 0.4 in 1s after measurement
starts. (b) Flow throughputs at t = 1s. (c) Using [7–10], Confluo can
obtain packet distribution across links (numbers along links) in a 1s
window during outcast. Circles represent switches, 1-15 represent
flowIDs, and D represents destination end-host.

flows (one with small number of flows, and one with large
number of flows) from two different input ports of a switch
compete for the same output port; it has been shown [62]
that in such a scenario, TCP can result in severe through-
put degradation for the small set of flows. This occurs due
to port blackout in switches that employ tail-drop queuing,
wherein a batch of consecutive packets are dropped from an
input port. In TCP Outcast, this disproportionately affects the
small set of flows, leading to TCP timeouts.

In our experiment, we recreate a setup similar to [62],
where 15 TCP flows with different sources and the same des-
tination (shown as D in the figure) compete for a single out-
put port at the final-hop switch. One flow traverses a 1-hop
path, two of them traverse a 3-hop path, and the remaining
12 traverse a 5-hop path. All links in the setup have 1Gbps
bandwidth. To monitor the TCP outcast problem, Confluo
first adds triggers to detect packet losses (Table 2(b)). Once
the trigger raises an alarm, the coordinator interface issues
diagnostic queries at 10ms intervals to obtain packet count
for each flow in that window, and compute cumulatively (1)
ratio of smallest to largest packet counts across all flows, and
(2) individual flow throughputs (Figure 10). Each diagnostic
query incurs an average latency of 250µs.

Owing to port blackout, the flow with smallest hop-count
observes the lowest throughput, while flows with larger hop-
counts observe higher throughput (Figure 10(b)). By exploit-
ing telemetry data embedded in packet headers, Confluo can

also obtain the number of packets transmitted through each
link in the network over a 1s window (Figure 10(c)).

6 Related Work
We already discussed related work in network monitoring
and diagnosis in §2.1. In this section, we focus on related
work in the context of Atomic MultiLog.

There has been a lot of work on the design of efficient,
concurrent logs [39–42, 54–56, 63–65]. Since log-based sys-
tems have been around for several decades, it would be im-
practical to attempt an exhaustive comparison. However, at a
high-level, we note that traditional log-based systems focus
on simple atomic operations on a single log; in contrast, Con-
fluo combines a collection of logs in the Atomic MultiLog to
support atomic filters, aggregates and triggers over packet
headers. By relaxing the atomicity guarantees for its indi-
vidual logs and guaranteeing atomicity only for end-to-end
MultiLog operations, Confluo achieves high concurrency for
these collection of logs. Figure 1 compares the performance
of Confluo against the state-of-the-art log-based system [54].

Database Management Systems (DBMS) [66–68] use sec-
ondary indexes to support filters and aggregates on records.
Unfortunately, atomically updating tree-based index struc-
tures such as B-Trees [69, 70] and Tries [71–74] incur high
write overheads due to complex tree traversals and locking
overheads, resulting in low write throughput. On the other
hand, hash-based indexes [75–77] sustain high throughput,
but do not support ordered access to data items. Confluo bor-
rows heavily from these approaches, but makes design trade-
offs to meet the high throughput and rich functionality re-
quirements of network monitoring and diagnosis (§3.2).

7 Conclusion
Confluo is an end-host stack that can be integrated with ex-
isting network management tools to enable monitoring and
diagnosis of network events. Confluo achieves this using
Atomic MultiLog, a new data structure that exploits structure
in network traffic to support highly concurrent read-write op-
erations. Confluo executes 1000s of triggers and 10s of filters
at line rate (for 10Gbps links) on a single core.

Acknowledgments
We would like to thank our shepherd, Cole Schlesinger,
and anonymous NSDI reviewers for their insightful feed-
back. We are also grateful to Praveen Tammana for help-
ing us in setting up experimental testbed, and for sharing
packet traces from PathDump and SwitchPointer experi-
ments. This research is supported in part by NSF CISE Ex-
peditions Award CCF-1730628, NSF DGE-1106400, NSF
CNS-1704742, and gifts from Alibaba, Amazon Web Ser-
vices, Ant Financial, Arm, CapitalOne, Ericsson, Facebook,
Google, Huawei, Intel, Microsoft, Scotiabank, Splunk and
VMware.

432 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim,
“Language-Directed Hardware Design for Network
Performance Monitoring,” in ACM SIGCOMM, 2017.

[2] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C.
Chen, and G. Zhang, “SketchVisor: Robust Network
Measurement for Software Packet Processing,” in ACM
SIGCOMM, 2017.

[3] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better
netflow for data centers,” in USENIX NSDI, 2016.

[4] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman, “One sketch to rule them all: Rethink-
ing network flow monitoring with UnivMon,” in ACM
SIGCOMM, 2016.

[5] M. Yu, L. Jose, and R. Miao, “Software defined traf-
fic measurement with opensketch,” in USENIX NSDI,
2013.

[6] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières, “Millions of Little Minions: Using Pack-
ets for Low Latency Network Programming and Visi-
bility,” in ACM SIGCOMM, 2014.

[7] P. Tammana, R. Agarwal, and M. Lee, “CherryPick:
Tracing Packet Trajectory in Software-Defined Data-
center Networks,” in USENIX SOSR, 2015.

[8] P. Tammana, R. Agarwal, and M. Lee, “Simplifying
Datacenter Network Debugging with PathDump,” in
USENIX OSDI, 2016.

[9] P. Tammana, R. Agarwal, and M. Lee, “Distributed
Network Monitoring and Debugging with Switch-
Pointer,” in USENIX NSDI, 2018.

[10] “In-band Network Telemetry (INT).” https://p4.org/
assets/INT-current-spec.pdf.

[11] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren, “Passive
Realtime Datacenter Fault Detection and Localization,”
in USENIX NSDI, 2017.

[12] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang, “Felix: Implementing Traffic
Measurement on End Hosts Using Program Analysis,”
in USENIX SOSR, 2016.

[13] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker,
“Compiling Path Queries,” in USENIX NSDI, 2016.

[14] A. Gupta, R. Harrison, A. Pawar, M. Canini, N. Feam-
ster, J. Rexford, and W. Willinger, “Sonata: Query-
Driven Streaming Network Telemetry,” in ACM SIG-
COMM, 2018.

[15] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown, “I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot Net-
works,” in USENIX NSDI, 2014.

[16] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-
ter, K. Agarwal, J. Carter, and R. Fonseca, “Planck:
Millisecond-scale monitoring and control for commod-
ity networks,” in ACM SIGCOMM, 2014.

[17] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Ma-
hajan, D. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and
H. Zheng, “Packet-Level Telemetry in Large Datacen-
ter Networks,” in ACM SIGCOMM, 2015.

[18] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu,
J. Padhye, B. T. Loo, and G. Outhred, “007: Democrat-
ically Finding the Cause of Packet Drops,” in USENIX
NSDI, 2018.

[19] “OpenSOC.” http://opensoc.github.io/.

[20] “Tigon.” http://tigon.io.

[21] C. Cranor, T. Johnson, O. Spataschek, and
V. Shkapenyuk, “Gigascope: A Stream Database
for Network Applications,” in ACM SIGMOD, 2003.

[22] M. Sullivan, “Tribeca: A Stream Database Manager for
Network Traffic Analysis,” in VLDB, 1996.

[23] M. Moshref, M. Yu, R. Govindan, and A. Vahdat,
“Trumpet: Timely and Precise Triggers in Data Cen-
ters,” in ACM SIGCOMM, 2016.

[24] A. Khandelwal, R. Agarwal, and I. Stoica, “Confluo:
Distributed Monitoring and Diagnosis Stack for High
Speed Networks.” Technical Report, 2018.

[25] “Confluo GitHub Repository.” https://github.com/
ucbrise/confluo.

[26] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and
S. Shenker, “NetBricks: Taking the V out of NFV,” in
USENIX OSDI, 2016.

[27] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy, “SoftNIC: A Software NIC to Augment
Hardware,” Tech. Rep. UCB/EECS-2015-155, EECS
Department, University of California, Berkeley, 2015.

[28] “The Pktgen Application.” https : / / pktgen .

readthedocs.io/en/latest/.

[29] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Pax-
son, and F. Schneider, “Enriching Network Security
Analysis with Time Travel,” in ACM SIGCOMM, 2008.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 433

https://p4.org/assets/INT-current-spec.pdf
https://p4.org/assets/INT-current-spec.pdf
http://opensoc.github.io/
http://tigon.io
https://github.com/ucbrise/confluo
https://github.com/ucbrise/confluo
https://pktgen.readthedocs.io/en/latest/
https://pktgen.readthedocs.io/en/latest/

[30] “Deepfield Defender.” http : / / deepfield . com /

products/deepfield-defender/.

[31] “Kentik Detect.” https://www.kentik.com.

[32] F. Fusco, M. P. Stoecklin, and M. Vlachos, “NET-FLi:
On-the-fly Compression, Archiving and Indexing of
Streaming Network Traffic,” VLDB, 2010.

[33] P. Giura and N. Memon, “NetStore: An Efficient Stor-
age Infrastructure for Network Forensics and Monitor-
ing,” in Springer-Verlag RAID, 2010.

[34] J. Lee, S. Lee, J. Lee, Y. Yi, and K. Park, “Flo-
SIS: A Highly Scalable Network Flow Capture System
for Fast Retrieval and Storage Efficiency,” in USENIX
ATC, 2015.

[35] “The health insurance portability and accountability
act.” http://www.hhs.gov/ocr/privacy/.

[36] “Cisco Compliance Solution for HIPAA Security
Rule Design and Implementation Guide.” https://
tinyurl.com/y94u8sqq.

[37] “Intel Data Plane Development Kit (DPDK).” http://
dpdk.org.

[38] “Open vSwitch (OVS).” http://openvswitch.org.

[39] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Kei-
dar, “Scaling Concurrent Log-structured Data Stores,”
in ACM EuroSys, 2015.

[40] M. P. Herlihy and J. M. Wing, “Linearizability: A
Correctness Condition for Concurrent Objects,” ACM
TOPLAS, 1990.

[41] “A Fast Lock-Free Queue for C++.”
http : / / moodycamel . com / blog / 2013 /

a-fast-lock-free-queue-for-c++.

[42] P. Tsigas and Y. Zhang, “A simple, fast and scalable
non-blocking concurrent fifo queue for shared memory
multiprocessor systems,” in ACM SPAA, 2001.

[43] P. E. Black, “perfect k-ary tree.” https://www.nist.
gov/dads/HTML/perfectKaryTree.html.

[44] “Disjunctive normal form.” https://en.wikipedia.
org/wiki/Disjunctive_normal_form.

[45] R. Agarwal, A. Khandelwal, and I. Stoica, “Succinct:
Enabling Queries on Compressed Data,” in USENIX
NSDI, 2015.

[46] “Configuring compression in Cassandra.” https://
docs.datastax.com/en/cassandra/2.0/cassandra/

operations/ops_config_compress_t.html.

[47] “RocksDB Tuning Guide.” https://github.com/
facebook/rocksdb/wiki/RocksDB-Tuning-Guide.

[48] “Memtables in Cassandra.” https://wiki.apache.
org/cassandra/MemtableSSTable.

[49] “Configuring compaction in Cassandra.” https://
docs.datastax.com/en/cassandra/2.1/cassandra/

operations/ops_configure_compaction_t.html.

[50] “SSTable and Log Structured Storage: Lev-
elDB.” https : / / www . igvita . com / 2012 / 02 / 06 /
sstable-and-log-structured-storage-leveldb.

[51] “SQLServer: Distributed Transactions (Database En-
gine).” https://technet.microsoft.com/en-us/
library/ms191440(v=sql.105).aspx.

[52] “Oracle: Distributed Transactions Concepts.” https:
//docs.oracle.com/cd/B10501_01/server.920/

a96521/ds_txns.htm.

[53] “Postgres: eXtensible Transaction Manager.” https://
wiki.postgresql.org/wiki/DTM.

[54] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wob-
bler, M. Wei, and J. D. Davis, “CORFU: A Shared Log
Design for Flash Clusters,” in USENIX NSDI, 2012.

[55] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,
V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck, “Tango: Distributed Data Structures over
a Shared Log,” in ACM SOSP, 2013.

[56] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-
shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,
S. Swanson, M. J. Freedman, and D. Malkhi, “vCorfu:
A Cloud-Scale Object Store on a Shared Log,” in
USENIX NSDI, 2017.

[57] K. M. Chandy and L. Lamport, “Distributed Snap-
shots: Determining Global States of Distributed Sys-
tems,” ACM TOCS, 1985.

[58] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,
and N. Shavit, “Atomic Snapshots of Shared Memory,”
JACM, 1993.

[59] H. Attiya and O. Rachman, “Atomic Snapshots in O
(N Log N) Operations,” SIAM Journal on Computing,
1998.

[60] H. Attiya, M. Herlihy, and O. Rachman, “Atomic Snap-
shots Using Lattice Agreement,” Springer-Verlag Dis-
tributed Computing, 1995.

[61] T. A. Benson, A. Anand, A. Akella, and M. Zhang,
“Understanding Data Center Traffic Characteristics,” in
ACM SIGCOMM CCR, 2009.

434 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://deepfield.com/products/deepfield-defender/
http://deepfield.com/products/deepfield-defender/
https://www.kentik.com
http:// www.hhs.gov/ ocr/ privacy/
https://tinyurl.com/y94u8sqq
https://tinyurl.com/y94u8sqq
http://dpdk.org
http://dpdk.org
http://openvswitch.org
http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++
http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++
https://www.nist.gov/dads/HTML/perfectKaryTree.html
https://www.nist.gov/dads/HTML/perfectKaryTree.html
https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://en.wikipedia.org/wiki/Disjunctive_normal_form
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_config_compress_t.html
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_config_compress_t.html
https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops_config_compress_t.html
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://wiki.apache.org/cassandra/MemtableSSTable
https://wiki.apache.org/cassandra/MemtableSSTable
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://docs.datastax.com/en/cassandra/2.1/cassandra/operations/ops_configure_compaction_t.html
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb
https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-leveldb
https://technet.microsoft.com/en-us/library/ms191440(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms191440(v=sql.105).aspx
https://docs.oracle.com/cd/B10501_01/server.920/a96521/ds_txns.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96521/ds_txns.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96521/ds_txns.htm
https://wiki.postgresql.org/wiki/DTM
https://wiki.postgresql.org/wiki/DTM

[62] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella, “The
TCP Outcast Problem: Exposing Unfairness in Data
Center Networks,” in USENIX NSDI, 2012.

[63] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levan-
doski, J. Hunter, and M. Barnett, “FASTER: A Concur-
rent Key-Value Store with In-Place Updates,” in ACM
SIGMOD, 2018.

[64] “Lock-Free Programming.” https://www.cs.cmu.
edu/~410-s05/lectures/L31_LockFree.pdf.

[65] I. Calciu, S. Sen, M. Balakrishnan, and M. K. Aguilera,
“Black-box Concurrent Data Structures for NUMA Ar-
chitectures,” in ACM ASPLOS, 2017.

[66] “Oracle Database.” https://www.oracle.com/index.
html.

[67] “MySQL.” https://www.mysql.com.

[68] “Microsoft SQL Server.” https://www.microsoft.
com/en-us/sql-server/sql-server-2016.

[69] R. Bayer and E. McCreight, “Organization and Main-
tenance of Large Ordered Indices,” in ACM SIGMOD,
1970.

[70] A. Braginsky and E. Petrank, “A Lock-free B+Tree,” in
ACM SPAA, 2012.

[71] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Oder-
sky, “Concurrent Tries with Efficient Non-blocking
Snapshots,” in ACM SIGPLAN PPoPP, 2012.

[72] S. Heinz, J. Zobel, and H. E. Williams, “Burst tries: a
fast, efficient data structure for string keys,” ACM TOIS,
2002.

[73] N. Askitis and R. Sinha, “HAT-trie: A Cache-conscious
Trie-based Data Structure for Strings,” in ACSC, 2007.

[74] D. R. Morrison, “PATRICIA - Practical Algorithm To
Retrieve Information Coded in Alphanumeric,” JACM,
1968.

[75] “MySQL: Comparison of B-Tree and Hash Indexes.”
https : / / dev . mysql . com / doc / refman / 5 . 5 / en /

index-btree-hash.html.

[76] “Oracle: About Hash Clusters.” https : / / docs .

oracle.com/cd/B28359_01/server.111/b28310/

hash001.htm.

[77] “SQL Server: Hash Indexes.” https : / / docs .

microsoft . com / en-us / sql / database-engine /

hash-indexes.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 435

https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://www.oracle.com/index.html
https://www.oracle.com/index.html
https://www.mysql.com
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html
https://dev.mysql.com/doc/refman/5.5/en/index-btree-hash.html
https://docs.oracle.com/cd/B28359_01/server.111/b28310/hash001.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/hash001.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28310/hash001.htm
https://docs.microsoft.com/en-us/sql/database-engine/hash-indexes
https://docs.microsoft.com/en-us/sql/database-engine/hash-indexes
https://docs.microsoft.com/en-us/sql/database-engine/hash-indexes

	Introduction
	Confluo Overview
	Motivation
	Confluo Interface
	Confluo Design Overview

	Confluo Design
	Background
	Atomic MultiLog
	Atomic Operations on Collection of Logs

	Monitor & Diagnoser Modules
	Archival Module

	Distributed Diagnosis
	Evaluation
	Confluo Performance
	Confluo Applications

	Related Work
	Conclusion

