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ABSTRACT
Queries involving Regular Expressions (RegEx) have a wide range
of applications including textual data analytics, natural language
processing, information retrieval, bioinformatics and interactive
graph queries. However, recent growth in dataset sizes have led
to new challenges in RegEx query execution. On the one hand,
traditional techniques for executing RegEx queries (e.g., full data
scans, or word-based indexes supported by partial data scans) are
memory-efficient allowing data to be stored in main memory; how-
ever, data scan latency does not scale well with data sizes. On
the other hand, more powerful indexes (e.g., m-gram indexes) have
query latency that grows sub-linearly in data sizes; however, these
indexes suffer from significantly higher storage overheads.

This paper builds upon recent advances in compressed data struc-
tures to achieve the best of the two worlds — memory-efficiency
of scan-based techniques, and latency-efficiency of powerful in-
memory indexes — using Swift, a query execution engine that ex-
ecutes RegEx queries directly on compressed data (without requir-
ing data decompression). Evaluation of Swift against four open-
source systems shows that Swift achieves significant speedups,
sometimes by as much as two orders of magnitude. Swift is open-
sourced, and is already being used in several production clusters.

1. INTRODUCTION
Regular expressions (RegEx) are a powerful tool for text ana-

lytics and information extraction. Traditionally, RegEx have been
used in applications like textual data analytics [3, 41], information
extraction [15, 16, 19, 22, 23, 34, 36] and bioinformatics [28, 39].
Unsurprisingly, efficiently executing queries involving RegEx is a
problem that has been studied for decades.

However, RegEx have recently witnessed a renewed interest
due to queries involving RegEx becoming both more important
and more challenging. Increasingly many applications use RegEx
across various stages in their data analytics pipeline including natu-
ral language processing [29,40,47,49], recommender systems [6,9]
and even interactive queries on graph data [13,14,24,25]. One case
in point is Apache Spark [2], a popular open-source framework for
distributed data analytics, where users frequently execute complex
RegEx queries for text analytics and machine learning pipelines.

Queries involving RegEx have also become more challenging
due to increasingly large data sizes in above applications. Tra-
ditional techniques for executing RegEx queries (e.g., full-data
scans [7, 8] and word-based indexes supported by partial data
scans [3, 41, 46]) are memory-efficient, allowing the data to be
stored and scanned in main memory. However, these techniques
suffer from new scalability issues — data scans do not scale well
with input data size, resulting in high query latency as the input size
grows to tens or hundreds of gigabytes [1, 20, 42, 51]. On the other

hand, powerful indexes like suffix trees and tries [12, 20, 37, 52]
have significantly better query latency. However, these indexes
often have high storage overheads [32, 35, 37]; for large datasets,
these indexes suffer from degraded performance when the index
size grows larger than the available memory [10, 20].

This paper builds upon recent advances in compressed data struc-
tures [10, 31, 44, 45] to achieve the best of the two worlds —
memory-efficiency of scan-based techniques and performance of
powerful indexes. These compressed data structures support ex-
act match of strings of arbitrary length in the input data as well as
random access of the input data. Our main contribution is Swift,
a query execution engine that extends the functionality from ex-
act string match to RegEx queries directly on these compressed
data structures (that is, without requiring decompression). By stor-
ing and querying a compressed representation of powerful indexes,
Swift not only avoids data scans but also avoids the performance
degradation due to indexes not fitting in main memory.

Swift uses two key insights. The first insight is regarding the
main challenge in efficiently executing RegEx queries on com-
pressed data. Consider the following “black-box” approach (§3)
— decompose the RegEx into tokens1, search for individual tokens
using compressed indexes (that support search of arbitrary sub-
strings in input file), and combine the intermediate results along
the RegEx operators. Figure 1 shows that naïvely executing the
black-box approach can actually lead to performance even worse
than scan-based techniques. The result of Figure 1 is not merely
an experimental artifact; our key insight here is a simple, yet sur-
prising, analytical result supporting the result of Figure 1 (§3) —
under the standard algorithmic cost model, if the RegEx query con-
tains Concatenation operator, the execution time of the black-
box approach could be arbitrarily far from optimal. Perhaps more
suprisingly, we show that the black-box approach executes in near-
optimal time if the RegEx query comprises of Union, Repeat and
Wildcard operators only.

Our second insight is that RegEx queries containing
Concatenation can be efficiently handled via query re-writing.
Intuitively, given an input RegEx query, we can perform a series
of transformations to eliminate the Concatenation operator (by
concatenating multiple smaller tokens into a longer token); this
results in a new equivalent RegEx query that contains only Union,
Repeat and Wildcard operators along with (potentially longer)
tokens. Since the compressed indexes support exact match of
arbitrary strings, we could then execute the black-box approach on
this new equivalent query. We present the Swift transformations
for such RegEx query re-writing in §4.

1Tokens are parts of RegEx that do not contain operators. For in-
stance, a RegEx (Yo|Ho)(Ho+) has two tokens Yo and Ho.
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Figure 1: The black-box approach for RegEx execution can be just as slow as, or even slower than, existing scan-based approaches for many RegEx queries
(see §5 for details on queries and experimental setup). Queries marked DNF did not finish within 10 minutes of execution time.

We present evaluation of Swift2 over real-world and benchmark
datasets in §5. We compare Swift against four popular open-
source systems that support RegEx query execution, including
ElasticSearch [3], MongoDB [41], ScanProsite [27] and Apache
Spark [2]. We find that Swift achieves significant speedups com-
pared to these systems, often as high as two orders of magnitude.

Interestingly, many Swift techniques turn out to have more gen-
eral applicability and lead to performance improvements even for
uncompressed data structures. We have implemented Swift on top
of a variety of data structures, including inverted indexes [46], suf-
fix trees [52], suffix arrays [37], compressed suffix trees [12], and
compressed suffix arrays [10, 31, 44, 45]3. We present evaluation
result for these data structures in [33].

In summary, this paper makes three contributions:
• We analyze the black-box approach to executing RegEx queries

on compressed data. We show that the black-box approach over
RegEx queries containing only Union, Wildcard and Repeat
operators executes in near-optimal time; however, when the
query contains Concat operator, the execution time of black-box
approach could be far from optimal.

• We present Swift— a simple, yet efficient, RegEx query engine
that enables execution of RegEx queries directly on compressed
data. We evaluate Swift against four popular open-source sys-
tems that support RegEx queries. The evaluation shows that
Swift leads to significant speed up in RegEx query execution la-
tency, sometimes by as much as two orders of magnitude.

• We show that Swift techniques are applicable to several un-
compressed data structures as well. In addition, we provide an
open-source implementation of Swift on top of a wide range of
data structures including inverted indexes, suffix trees and com-
pressed indexes, as well as on top of Apache Spark [2].

2. PRELIMINARIES
We start with a description of the notation used in the paper.

Notation. Throughout the paper, we use the usual definitions of
RegEx operators, as summarized in Table 1. The supported RegEx
syntax is the POSIX extended standard [4]. Let Σ denote a to-
tally ordered set of alphabets in the input. The operators are inter-
leaved by tokens, which can be either (a) character class, denoted
by ‘[]’; for example, [0-9a-dA-F] represents any character from
0 through 9, a through d, and A through F; or (b) m-gram, which is
a sequence of m alphabets from Σ.
2We have open-sourced our implementation of Swift, including all
the datasets and queries necessary to reproduce our results: https:
//github.com/amplab/swift. Moreover, we have also implemented
Swift on top of Apache Spark; this implementation is being used in
production and can be easily run on any Apache Spark cluster.
3Implementation also available in the open-source release.

Table 1: Supported operator classes.

Operator Contents Explanation

Concat (RE1)(RE2)
RE2 immediately

follows RE1
Union RE1|RE2 Either RE1 or RE2

Repeat
RE?

RE*

RE+

Concat of RE with RE

Zero or one (?)
Zero or more (*)
One or more (+)

Wildcard (RE1).* (RE2)
RE2 occurs anywhere

after RE1

RTree. A RegEx can equivalently be represented as a binary tree
that takes standard precedence constraints between operators into
account [30, 50]. We call this tree an RTree. Each internal node of
the RTree represents a RegEx operator, while the leaves represent
tokens (see Figure 2). The problem of constructing an optimized
RTree has been explored in a number of previous works [11, 18,
30,50] and is orthogonal to Swift techniques. We use an optimized
RTree from [18] as an input to Swift.

Compressed data structures. Compressed Suffix Arrays
(CSA) [10, 31] store a compressed representation of the input file.
CSAs support exact matches of arbitrary strings within the input,
as well as random access to the input file. The description of these
data structures is not needed to keep the paper self-contained; we
refer the readers to [10, 31].

3. NEED FOR SWIFT
In this section, we outline the need for Swift using a naïve black-

box approach to executing RegEx queries on compressed data.

Black-box RegEx. The “black-box” approach can be summarized
in three steps (see example below):
1. Construct an RTree;

2. Compute search results (offsets into the input file) for each leaf
of the tree (token) individually.

3. Traverse the tree bottom up, generating the results at each oper-
ator node using intermediate results for left and right subtrees.
Algorithms to combine intermediate results for each operator
are outlined in §3.1 and are illustrated in Figure 3.

Example. Consider a query (Yo|Ho)(Ho+) over the input file of
Figure 3. The black-box approach first constructs an RTree (Fig-
ure 2) and computes the offsets for individual tokens ({Yo, Ho}).
The RTree is then traversed bottom-up — token results are first
used to compute the result for (Yo|Ho) and for (Ho)+, as in Fig-
ure 3, and then combined along the Concat operator to get the final

https://github.com/amplab/swift
https://github.com/amplab/swift
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Figure 2: RTree for RegEx (Yo|Ho)(Ho+). Nodes represent Concat
(C), Union (U) and Repeat (R) operators.

result {4, 12, 14}. Note that to combine the results across mul-
tiple operators, the length for corresponding intermediate results
(e.g., 2 for (Yo|Ho)) also needs to be tracked.

3.1 Black Box Algorithms
We describe the algorithms for combining the intermediate re-

sults (corresponding to the left and right subtree) for individual
operators using the black-box approach4. We assume the input
to be a flat unstructured file, where a ResultSet is a collection
of (offset, length) pairs, corresponding to the offsets and the
match length for the sub-RegEx rooted at a node in the RTree.
A discussion on extending these algorithms to support RegEx on
semi-structured data is provided in [33].

Union. The trivial algorithm for the Union operator outputs the set
union of left (L) and right (R) subtree results. Trivially, the com-
plexity of the algorithm is O(|L|+ |R|). Since the output cardinality
is also so = |L|+ |R|, the complexity of the algorithm is O(so).

Algorithm 1 Concat

1: procedure Concat(L: ResultSet, R: ResultSet) . L, sorted by (offset +
length), R sorted by offset

2: i← 0, j← 0; O ← /0

3: while i < L.size and j < R.size do
4: if (L[i].offset + L[i].length = R[j].offset) then
5: Put (L[i].offset, L[i].length + R[j].length) in O

6: i← i+1, j← j+1

7: else if (L[i].offset + L[i].length < R[j].offset) then
8: i← i+1

9: else
10: j← j+1

11: end if
12: end while
13: return O

14: end procedure

Concat. Algorithm 1 for the Concat operator scans L and R, and
outputs all offsets L[i].offset in L for which there exists an off-
set R[j].offset in R such that R[j].offset = L[i].offset
+ L[i].length indicating that the sub-RegEx corresponding to
results in R immediately follows the one in L.

The algorithm maintains two pointers (each initialized to the first
index of the two sets). Whenever the above condition is satisfied,
the pointers are advanced to the next index for both the sets; else
the pointer corresponding to the smaller offset is advanced. The
algorithm terminates when one of the sets is completely scanned.
Since the algorithm accesses each element in L and R at most once,
the complexity is O(|L|+ |R|).
4We believe these algorithms to be standard, but outline them for
sake of completeness of our analysis results

Algorithm 2 Repeat

1: procedure Repeat(L: ResultSet) . L, sorted by (offset + length)

2: for i← 0 to L.size do
3: j← i; `← 0

4: while (L[i].offset + ` = L[j].offset) do
5: ` += L[j].length

6: Put (L[i].offset, `) in O

7: j← j+1

8: end while
9: end for
10: return O

11: end procedure

Algorithm 3 Wildcard

1: procedure Wildcard(L: ResultSet, R: ResultSet) . L, sorted by (offset +
length), R sorted by offset

2: O ← /0

3: Binary search to find smallest index idx2 into R such that,
L[0].offset + L[0].length <= R[idx2].offset

4: for i← idx2 to R.size do
5: Binary search to find largest index idx1 into L such that,

L[idx1].offset + L[idx1].length <= R[i].offset

6: for j← 0 to idx1 do
7: ` ← (R[i].offset − L[j].offset) + R[i].length

8: Put (L[j].offset, `) in O

9: end for
10: end for
11: return O

12: end procedure

Repeat. Algorithm 2 for Repeat is similar to that of Concat; the
main difference is that the length variable (denoted by `) now
depends on the number of valid repetitions.

The algorithm maintains two pointers (on the same set) and
checks, in each step, whether the offset for the first pointer summed
up with the current length matches the offset for the second pointer.
If the condition matches, a single result is output, the length value
is updated to reflect another repetition and the second pointer is ad-
vanced to check for further repetitions; otherwise, the first pointer is
advanced, the length is re-initialized to zero and the second pointer
is brought back to the position of the first pointer. Note that each
input value corresponds to at least one output value (for single repe-
titions). Moreover, note that the first pointer access each element in
L once; the second pointer may access any element more than once
but outputs at least one output for each access. The complexity of
the algorithm is, thus, |L|+ |O|< 2|O|= 2so, since L ⊆ O .

Wildcard. Algorithm 3 for the Wildcard operator takes L and R
and outputs all pairs of elements (`, r) such that r occurs after `.

The algorithm has two main ideas. First, to avoid unnecessary
operations, the algorithm first picks the element in R that occurs
after than the first element in L into the file — this ensures that
there exists at least one element in L corresponds to the Wildcard
results. Second, to find the smaller element in L, the algorithm
performs a binary search rather than a scan. The binary search
takes time log(|L|+|R|), and outputs, say x1 results (the first idea
ensures that x1 6= 0). The complexity of each step is, thus, x1 +
log(|L|+|R|) <= x1 · log(|L|+|R|). The end-to-end complex-
ity of the algorithm is: (x1 + x2 + . . .) ·max(log(|L|), log(|R|)) =
s0 · log(|L|+|R|), which is linear in the output size except for the
logarithmic terms.



Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Input Y o H o Y o H o H o Y o Y o H o H o H o $

Search(Yo) = {0, 4, 10, 12}; Search(Ho) = {2, 6, 8, 14, 16, 18}

Query: (Yo|Ho)
{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 2, 4, 6, 8, ...}

Lengths = {2, 2, 2, 2, 2, ...}

Query: (Yo)(Ho)
{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 4, 12}

Lengths = {4, 4, 4}

Query: (Ho)+
{2, 6, 8, 14, 16, 18}

Result = {2, 6, 6, 8, 14, 14, 14, ...}

Lengths = {2, 2, 4, 2, 2, 4, 6, ...}

Query: (Yo).*(Ho)
{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 0, 0, 0, 0, 4, 4, 4, ...}

Lengths = {4, 8, 10, 16, 20, 6, 12, 14, ...}

Figure 3: Illustration of the third step in black-box approach — executing algorithms in §3.1 on an example input file (the top row shows the file offsets for
ease of illustration). The intermediate search results (i.e., offsets into the input file) for the 2-grams Yo and Ho are shown next. (top left) The Union operator
outputs the set union of the offsets for the two operands. (bottom left) The Concat operator outputs all left operand offsets for which there exists a right
operand offset satisfying offsetright = offsetleft+ lengthleft. (top right) The Repeat operator is similar to the Concat operator except for length
admits values depending on last result. (bottom right) The Wildcard operator outputs all left operand offsets for which there exists a right operand offset
satisfying offsetright ≥ offsetleft+lengthleft.

3.2 Analysis of Black-box RegEx
We now analyze the black-box approach under the standard

RAM computational model [21] 5. Specifically, we obtain the fol-
lowing result for the individual operator algorithms:

Lemma 1 Given the intermediate results for the left and the right
subtree as sorted arrays of size m and n≥m, there exist algorithms
for Union, Repeat, Wildcard and Concat operators that com-
bine the intermediate results in time O(so),O(so),O(so logn) and
O(m+n), respectively, where so is the final output cardinality.

It is known that, under the RAM computational model, the
time complexity of an algorithm is lower bounded by the output
size [21]. Since the output cardinality so is dependent on the input
file and is unknown a priori, the above lemma shows that indepen-
dent of the cardinality of the results for the left and the right sub-
tree, the Union, Repeat and Wildcard operators combine these
results in almost optimal time for any fixed RTree6. However, such
is not the case for the Concat operator — the output cardinality
for the Concat operator (O(1) in the worst-case) can be arbitrarily
smaller than the cardinality of results for the left or the right sub-
tree. Thus, the Concat operator when operating on intermediate
results of the left and the right subtree may end up performing sig-
nificantly more operations than ideal — linear in the output size —
making the black-box approach inefficient.

The end-to-end performance of the black-box approach depends
on the time taken to construct the RTree, to search for leaf tokens,
and to traverse up the tree combining intermediate results at nodes.
In our experiments, we found that the last step is indeed the perfor-
mance bottleneck (thus making Lemma 1 result more relevant). In-
tuitively, this is because constructing an RTree (scanning the RegEx

5While a standard for algorithmic analysis, the RAM computation
model ignores effects of data caching. Nevertheless, it provides a
rough estimate of the efficiency of the individual operators in the
black-box approach. Our evaluation (§5) takes this limitation into
account by ensuring that all data fits in memory.
6The Wildcard operator requires an extra logarithmic factor in
terms of the cardinality of the intermediate results.

once) and searching for individual tokens in index (binary search)
is extremely fast. The performance of the third step, in turn, re-
quires combining intermediate results across the operators along
the RTree, which is significantly more complex.

Need for Swift. Lemma 1 outlines the central problem in devising
a technique for executing RegEx queries on compressed data. As
shown in Figure 1, the performance for queries containing Concat
operator can be arbitrarily far from optimal, and requires careful
handling for efficient execution. In the following section, we out-
line a query re-writing technique that enables the efficient execution
of queries containing Concat operator through simple transforma-
tions of the query RTree.

4. Swift
We now describe Swift, a query re-writing technique that im-

proves upon the black-box approach using two ideas. First, it
transforms a naïvely built RTree into one where most Union,
Wildcard and Repeat operators are not the children of a Concat
operator (§4.1, §4.2, §4.3). These operators are, thus, pushed up the
tree and operate in a near-optimal manner as shown in Lemma 1.
Second, it avoids the black-box approach for the Concat operator
(§4.4). We finally show how to combine these two ideas to con-
struct an efficient end-to-end RegEx execution engine (§4.5).

4.1 Pull-Up Union
The Pull-Up Union transformation attempts to transform a

given RTree into one where Union operator is not a child of
a Concat operator. The transformation is formally described
in Algorithm 4, and is illustrated in Figure 4. The transfor-
mation uses a simple observation that a RegEx of the form
(RE1|RE2)(RE3) is equivalent to (RE1)(RE3)|(RE2)(RE3), for arbi-
trary RegEx RE1,RE2,RE3. However, the ordering of the Union
and the Concat operands needs to be handled carefully (see Fig-
ure 4). Note that if both children of the Concat operator are Union
operators, the transformation needs to be applied recursively (as
in Algorithm 4) since the transformation introduces new Concat
nodes in the RTree.
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Algorithm 4 Pull-Up-Union (node: RTree)

/* Base case: terminate if leaf node is a token. */
1: if node type is Token then
2: return
3: end if

/* Pull up unions in left and right sub-tree. */

4: pullUpUnion(node.left)

5: pullUpUnion(node.right)

6: if node type is Concat then
/ *Apply transformations (recursively)*/

7: if node.left type is Union then
8: apply transformation T1 to node (Figure 4)

9: else if node.right type is Union then
10: apply transformation T2 to node (Figure 4)

11: end if
12: pullUpUnion(node.left)

13: pullUpUnion(node.right)

14: end if
15: return

4.2 Pull-Up Wildcard
The Pull-Up Wildcard transformation attempts that the re-

sulting RTree does not have a Wildcard operator as a child of a
Concat operator. The transformation builds upon another simple
observation that a RegEx of the form (RE1)(RE2.*RE3) is equiv-
alent to (RE1)(RE2).*RE3. Figure 5(a) illustrates this transfor-
mation on a RTree containing Wildcard as a child of the Concat
operator. Note that no new nodes are introduced, and thus, the
transformation does not need to be applied recursively.

4.3 Pull-Out Repeat
Unlike Union and Wildcard operators, ensuring that a Repeat

operator is not a child of a Concat operator is more challeng-
ing. Swift only partially handles this case — when the child of
the Repeat operator is either a Wildcard operator or an m-gram
token, the transformation pulls out the Repeat operator from the
RTree. Otherwise, the subtree rooted at the Repeat operator (de-
noted by RE+ below) is left as is.

RE with Wildcard. Note that if RE contains a Wildcard operator,
the child of the Repeat operator is the Wildcard operator (due
to standard precedence order). If RE ≡ RE1.*RE2, then it is easy
to see that results for RE+ are same as that of RE, by definition
of the Wildcard operator. Therefore, if the (only) child of the
Repeat operator is a Wildcard operator, we simply remove the
corresponding Repeat node from the RTree (see Figure 5(b)).

RE with m-gram token. Now consider the case when RE does not
contain a Wildcard operator; since Swift does not transform the
RTree when RE contains either of Union or Concat operators, RE
must be a token. If RE is an m-gram, the transformation exploits
the observation that a Repeat operator can equivalently be rep-
resented as a Union of Concatenations. Specifically, let REi

represent exactly i self-concatenations of RE; that is, RE1 = RE,
RE2 = (RE)(RE), and so on. Then, the expression RE+ can be
written as RE+ = (RE1|RE2|RE3|...|REn), where n is the number of
characters in the input file. The transformation, thus, replaces the
repeat operator by a subtree composed of Union and Concat oper-
ators corresponding to the above expression.

However, naïvely doing this transformation will result in RTree
having very large depth (due to expanding RE+ for length n, the
number of characters in the input file). Indeed, in practice, there
exists a small k such that REk has non-zero number of occurrences



Table 2: Protein Signature RegEx queries taken from the Prosite Database [48]
Query ID Query Protein Family
Query#1 [DE][SN]L[SAN][ACDFHKMLNQPSRTWVY][ACDGFIHKMNQPSRWVY][DE].EL GRANINS_1
Query#2 [LIVMF][LIMN]E[LIVMCA]N[PATLIVM][KR][LIVMSTAC] CPSASE_2
Query#3 [KRG][KR].[GSAC][KRQVA][LIVMK][WY][LIVM][KRN][LIVM][LFY][APK] RIBOSOMAL_L16_1
Query#4 [DE]GSW.[GE].W[GA][LIVM].[FY].Y[GA] TERPENE_SYNTHASES
Query#5 Q[LIV]HH[SA]..DG[FY]H CAT
Query#6 [AC]GL.FPV HISTONE_H2A
Query#7 CKPCLK.TC CLUSTERIN_1
Query#8 Y..[HP]W[FYH][APS][DE].P.KG.[GA][FY]RC[IV][RH][IV] BTG_1
Query#9 G[MV]ALFCGCGH MYELIN_PLP_1
Query#10 [FYW]P[GS]N[LIVM]R[EQ]L.[NHAT] SIGMA54_INTERACT_3

Table 3: Text analysis RegEx queries taken from [20]; \d and \. refer to any digit (i.e.[0-9]) and to the dot (‘.’) character, respectively.
Query ID Query Description
Query#1 <script>.*</script> HTML Scripts
Query#2 Motorola.*(XPC|MPC)([0-9])+([0-9a-z])* Motorola PowerPC chip numbers
Query#3 William [A-Z]([a-z])+ Clinton President Clinton’s middle name
Query#4 1-\d\d\d-\d\d\d-\d\d\d\d US Phone Numbers
Query#5 ([a-z0-9_\.])+(([a-z0-9])+\.)*stanford\.edu Stanford domain URLs.

while REk+1 has zero occurrences. It is therefore sufficient to ex-
pand the Repeat operator for only k terms. Furthermore, since RE
is an m-gram, it suffices to perform a binary search for k — each
step in the binary search looks up the index to check whether REi

has non-zero occurrences. This requires log(n) index lookups but
is still faster than the black-box approach. The subtree rooted at
the Repeat operator is thus replaced by a combination of Union
and Concat operators. We then apply the transformations from
§4.1 and §4.2 to ensure that Concat is not a parent of the Union or
Wildcard operators.

4.4 Pull-Out Concat
Finally, we introduce a simple Pull-Out Concat transforma-

tion, which is executed when either of the two conditions are met.
First, if both the children of a Concat operator are tokens (say, T
and T’), the transformation pulls out the Concat operator and re-
places the subtree rooted at the Concat operator with a new token
TT’, a longer string that is a string concatenation of the two chil-
dren tokens (Figure 5(c)). Second, if the child of the Concat op-
erator is a Repeat operator with character class token as its child,
the sub-RegEx must be of the form (R1)(R2+). As discussed in §3,
Swift executes this sub-expression using partial scans. The trans-
formation thus pulls out the Concat operator and replaces it with a
partial scan (PS) operator (Figure 5(d)).

4.5 Putting it all together
We finally connect all the pieces together, and show how Swift

executes a given RegEx query. Given the query, we construct a
RTree; we then traverse the RTree in a bottom-up fashion, apply-
ing the transformations from §4.1, §4.2 and §4.3 to transform the
original RTree into one with the property that most of the Concat
operators only have tokens or other Concat operators as its chil-
dren. Given this new RTree, we again traverse the tree bottom-
up, applying Pull-Out Concat transformation. Finally, we exe-
cute search for the tokens (corresponding to the leaves of the new
RTree), and traverse the RTree bottom-up combining the intermedi-
ate results across the operators. Once the root of the tree is reached,
the final query results are returned.

5. EVALUATION
We now evaluate the performance of Swift against popular open-

source systems that support RegEx query execution.
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Figure 6: Storage footprint for different systems for the Wikipedia and
Pfam-A datasets.

5.1 Experimental Setup
Datasets and Queries. Our datasets and queries are drawn from
three applications: bioinformatics [28, 39], text analytics [3, 41],
and distributed computing framework pipelines [2].

For the bioinformatics application, we use the standard Pfam-A
Protein dataset [26], which is 8GB in size and consists of 46 mil-
lion protein sequences, each composed of 20 distinct amino-acids
represented by the standard IUPAC one letter codes [5]. Typical
RegEx queries on these sequences search for protein signatures,
that are certain important regions within the sequence. We present
results for 10 randomly selected protein signature RegEx queries
from the Prosite [48] database (see Table 2).

For the text analytics application, we use a collection of 4.8
million English Wikipedia articles, constituting roughly 10GB of
data for our single machine experiments, and a collection of 19.2
million Wikipedia articles (∼ 10GB of data) for our distributed
experiments. Unfortunately, there is no standard workload for
RegEx queries in text analytics; to that end, we ran all the queries
from [20], and present results for queries that output non-zero re-
sults for Wikipedia dataset (see Table 3). For Apache Spark [2], we
use the same dataset and queries as text analytics application, but
increase both the dataset size and cluster size by 4×. We provide
details on the cluster used in our experiments below.

Compared Systems. We compare the performance of Swift
against several open-source systems that support RegEx— Elas-
ticsearch [3] and MongoDB [41] for the text analytics application,
Apache Spark [2] for text analytics on a distributed computing plat-
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form, and ScanProsite [27] for the bioinformatics application.
Elasticsearch uses Lucene [38] as its underlying searching and

indexing engine, and executes RegEx queries using an automaton-
based approach. MongoDB indexes are not supported for text
documents larger than 1KB (which is the case for some of the
Wikipedia articles); thus, MongoDB executes RegEx queries using
full-data scans. Apache Spark is a compute engine that can support
arbitrary operations; prior to Swift, Apache Spark used Scala’s full-
scan based RegEx engine to execute queries in a distributed man-
ner. Finally, ScanProsite is a publicly available tool for executing
RegEx on protein sequences using in-memory data scans.

Finally, Swift executes RegEx queries directly on Compressed
Suffix Arrays [31] as outlined in §3 and §4. Figure 6 compares
the storage overhead for the different systems. Elasticsearch and
MongoDB have storage footprint of 1.3−1.5× the input size, while
Apache Spark and ScanProsite use storage exactly 1× the input
size. Finally, Swift on CSA has the lowest storage footprint of
0.6− 0.8× the input size for different application domains, i.e., it
operates on compressed data.

The rest of the paper focuses on latency of executing RegEx,
over an Amazon EC2 r3.8xlarge instance with 244GB RAM (for
bioinformatics and text analytics applications), and a cluster of 4
c3.4xlarge instances with 30GB RAM each (for distributed com-
puting framework application). In both settings, the available RAM
is large enough to fit each of the data structures completely in mem-
ory (for all systems).

5.2 Comparison against Existing Systems
We start by discussing the performance of Swift against existing

systems that support RegEx query execution.

Text Analytics. Figure 7(a) summarizes the query latency results
for the text analytics application. MongoDB scans through all of
the documents to find matches to the RegEx, while Elasticsearch
scans through all the index entries. Swift, however, transforms

the RTree to efficiently search for component m-grams within the
RegEx, avoiding data scans as much as possible. This enables Swift
to achieve much lower query latency compared to existing systems,
with benefits varying from 1–3 orders of magnitude across the eval-
uated queries.

Bioinformatics. The query latencies for Swift and ScanProsite are
summarized in Figure 7(b). Swift significantly outperforms Scan-
Prosite, often as much as by four orders of magnitude. This is
primarily because ScanProsite scans the entire data for each query
(leading to similar latency across queries). Swift, on the other hand,
avoids scans and can efficiently lookup the RegEx tokens from the
underlying data structure (CSA, in this case), allowing it to find
matches for the protein signatures much faster.

Distributed Computing Framework. Figure 8 compares the
RegEx query latency for Apache Spark, with and without Swift; the
figure also shows the performance of Swift (outside Apache Spark)
for relative comparison with Figure 7(a) results. We observe that
Swift significantly speeds up Apache Spark (often by ∼ 1–2 or-
ders of magnitude) by avoiding Apache Spark’s full-scan based ap-
proach. For Query#3, however, Swift’s implementation on Apache
Spark suffers from Java’s GC overheads (since the intermediate re-
sults contain a large number of small objects) and Apache Spark’s
task startup time overheads. Swift’s standalone implementation, on
the other hand, observes consistently low latency.

5.3 Benefits of Swift Optimizations
We now evaluate the benefits of Swift optimizations on top of

the black-box approach. Our key observation is that when a query
comprises of Union, Repeat and Wildcard operators only (that
execute in near-optimal time as shown in Lemma 1), Swift op-
timizations do not provide benefits over the black-box approach.
However, most queries (12 out of 15 in our evaluation) can benefit
significantly using Swift, sometimes by as much as two orders of
magnitude. We discuss the results in depth below.

Queries for which Swift is unnecessary. We start the discus-
sion with queries where Swift transformations are unnecessary (3
out of 15 queries in our evaluation). These queries either: (1) do
not contain sub-optimal operators for the black-box approach (e.g.,
Query#1 for Wikipedia); or (2) contain character classes where
both the black-box and the Swift approaches perform partial scans
(e.g., Query#2, #3 for Wikipedia). Figure 9 shows that Swift has
performance similar to the black-box approach for these queries.

Benefits of Swift. For most of the queries (12 out of 15 queries
in our evaluation; see Figure 9), Swift approach yields signifi-
cant speedup over the black-box approach. These queries have
three peculiar properties that make the black-box approach ineffi-
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Figure 9: Performance gains for Swift optimizations over Black-box approach across different application domains. Swift achieves significant
speedups for queries where Swift transformations are applicable (Query#4-5 for Text Analytics, all queries for Bioinformatics); queries where the transfor-
mations are not applicable or require partial scans see performance similar to the black box approach (Query#1-3 for Text Analytics). Queries marked DNF
did not finish within 10 minutes of execution time.

cient. First, some of these queries (e.g., Query #1�#5, #8, #10
in Pfam) contain a large number of Concat operators, making the
black-box approach inefficient due to Lemma 1. Second, queries
that contain fewer Concat operators (e.g., Query #6, #7, #9 in
Pfam) often have large number of occurrences for individual to-
kens; Lemma 1 shows that as the cardinality of results for the
left and the right subtree increases, the black-box approach may
get worse for the Concat operator. Finally, all Pfam queries as
well as some Wikipedia queries (e.g., Query #4, #5) have char-
acter classes around frequently occurring tokens, making partial
data scans inefficient since a large fraction of the input needs to
be scanned. Swift overcomes these inefficiencies of the black-box
approach using its transformations, leading to one to two orders of
magnitude faster query execution than the black-box approach.

5.4 Generality of Swift
Although our discussions so far have been restricted to flat un-

structured inputs encoded as Compressed Suffix Arrays (CSA),
Swift algorithms can be adapted to more general data representa-
tions, and even several uncompressed index structures.

Index structures. Recall from §3 and §4 that the Swift query
execution relies on CSA for arbitrary token searches and random
access to the input. Interestingly, Swift leads to performance im-
provements even for uncompressed index structures that provide
functionality similar to CSA [10, 12, 20, 31, 37, 46, 52]. Although
not originally our goal, we have implemented Swift on top of a
variety of data structures, including inverted indexes [46], suffix
trees [52], suffix arrays [37], compressed suffix trees [12], and com-
pressed suffix arrays [10, 31, 44, 45]. We provide a comparison of
the storage requirements and Swift performance for the different
data structures in [33].

Semi-structured Data. For semi-structured data, we assume that
the indexes above map each token to a (documentID, offset)
pair, where the latter is the offset into the document where the
token occurs. This allows us to adapt Swift algorithms for flat un-
structured files to semi-structured data without any change in the
asymptotic complexity. A detailed discussion can be found in [33].

6. RELATED WORK
We compare and contrast Swift against the two traditional ap-

proaches to executing RegEx queries.

Index-based approaches. There are a multitude of techniques
both for indexing and for using indexes. On the indexing front,
note that tokens in RegEx by nature are not linguistically meaning-

ful, making traditional indexing techniques (e.g., inverted indexes)
that use English words or other linguistic constructs [46] as keys
less useful. As a result, specialized indexes for RegEx have been
designed — m-gram indexes [20, 43], full-text indexes [38], and
tree-based indexes [12, 17, 52], among others.

How these indexes are used to execute RegEx typically depends
on the underlying indexing technique. However, at a high-level,
there are two possible approaches. First, using indexes as a mech-
anism to filter the documents to be scanned [20]; and second, ex-
ecuting the entire RegEx using indexes (the black-box approach
from §3). The first approach is extremely fast when the selectivity
of indexed tokens is high, that is, filtering results in very few doc-
uments to be scanned. However, such is often not the case (e.g.,
all Pfam-A queries), leading to full data scans. Swift improves the
state-of-the-art for both approaches, by avoiding full-data scans as
well as using optimizations to speed up the black-box approach.

Scan-based approaches, and why are index-based approaches
not used in practice? Most popular open-source data stores that
support RegEx queries [3, 41] resort to data scans rather than us-
ing index based techniques. We believe this is for two reasons: (i)
the storage overhead of indexes specialized for RegEx queries [20];
and (ii) index-based techniques do not offer latency gains over data
scans (even in our evaluation, compare results for black-box ap-
proach with scan-based approaches in Figure 1). Indexes thus use
more storage while providing little or no latency benefits.

However, recent research has shown that the storage overhead of
indexes can be reduced down to no more than the input size without
asymptotic increase in query latency [10,31], thus motivating us to
revisit index-based approaches. Moreover, Swift leads to orders
of magnitude speed up over the scan-based approaches for most
of the evaluated queries. Swift, when operating on CSA, resolves
both the above issues with index-based approaches making them an
interesting choice for executing RegEx queries.

7. CONCLUSION
Motivated by new challenges due to growth in data sizes, this

paper revisits the problem of efficient RegEx query execution — a
powerful primitive for applications ranging from text analytics to
natural language processing to graph queries to distributed data an-
alytics pipelines in machine learning. We present Swift— a query
execution engine that builds upon recent advances in compressed
data structures to enable RegEx query execution directly over com-
pressed data. Evaluation of Swift against popular open-source data
stores shows that Swift leads to significant speed ups in RegEx
query execution, sometimes by two to three orders of magnitude.
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APPENDIX
A. SWIFT REGEX EXECUTION WITH

OTHER DATA STRUCTURES
Intuitively, the performance benefits of Swift over the black-box

approach depend on the query as well as the underlying data struc-
ture used to search m-gram tokens. We have implemented the
black-box and the Swift approaches on a variety of data struc-
tures, including, Suffix Trees (ST) [52], Suffix Arrays with LCP
(SA) [37], k-gram indexes, compressed suffix trees (CST), and
compressed suffix arrays (CSA) [10], along with support for par-
tial scans. Each of these data structures achieves a unique tradeoff
between the storage footprint and the search latency for m-gram
tokens. We present results for ST, SA, and CSA, since these
achieve strictly better space-latency tradeoff than other data struc-
tures. CSA can achieve multiple operating points on the storage-
latency tradeoff space depending on the desired compression fac-
tor; we present the results for the two extremes (termed CSA1 and
CSA2).
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Figure 10: Storage footprint for different data structures for the Wikipedia
and Pfam datasets. Note that for ST and SA, we store the original input as
well (shown as solid fill), while CSA implicitly encodes the input.

On choice of data structure. While Swift offers performance ben-
efits across all the evaluated data structures, the absolute perfor-
mance depends on the underlying data structure. Figure 13 shows
the performance of SA, and the two versions of CSA relative to
the ST data structure; these are the same results as in Figure 11
and Figure 12, just focusing on Swift performance and scaled by
the ST latency. Interestingly, the higher storage footprint of ST
often offers super-linear latency benefits when the system is not
memory-constrained — ST requires 2.2×,4.3× and 26.2× higher
storage than SA, CSA1 and CSA2, and offers 4.7×,10× and 13.3×
lower latency on an average, respectively. Indeed, the tradeoff may
be different for memory-constrained systems; we leave a through
evaluation of this case for future work.

B. SEMI-STRUCTURED DATA
We discuss extensions to black-box algorithms for semi-

structured data. We assume that indexes map tokens to a pair
(documentID, offset), where offset is the starting offset of
the document into a flat file containing all documents. The pairs
(documentId, offset) are sorted by offsets; given an offset,
the corresponding documentID can be found via binary search.

Union. No modifications required, since each (documentID,
offset) pair already corresponds to a valid result.

Concat. Line 4 in Algorithm 1 is modified to additionally
check if both L[i].offset and R[j].offset have the same
documentID. This ensures that two offsets are concatenated only
if they belong to the same documentID.

Repeat. As above, Line 4 in Algorithm 2 is modified to addition-

ally check if both L[i].offset and L[j].offset have the same
documentID.

Wildcard. Line 8 in Algorithm 3 is modified to insert only those
results into R for which L[j] and R[i] have the same documentID.
For each R[i], we determine the start and end offset for the cor-
responding document by consulting the (documentId, offset)
pairs; while inserting corresponding L[j] entries in ROut, we
check if L[j].offset lies between the begin and end offsets for
R[i]’s document.

Since we perform an additional binary search on the list of doc-
uments for each R[i], this adds an additional log(#documents)
term to the complexity, bringing the overall complexity to
s0 · (log(|L|+|R|)+ log(#documents)).

C. CHARACTER CLASSES
Consider a RegEx (R1)(R2+) with two tokens R1,R2, where R1 is

an m-gram and R2 is a character class. Indeed, one way to avoid the
black-box approach for this particular case of the Concat operator
is to search for the offsets of R1, and then perform a partial scan
around these offsets to check if the following characters belong to
R2. In this section we show that, in this case, partial scans perform
better than combining individual results for R1 and R2 under the
above cost model (independent of the input file). Intuitively, this
follows from the result of Lemma 1, which shows that the Concat
operator may become increasingly inefficient as the cardinality of
intermediate results increases. This is especially the case when ei-
ther of R1,R2 is a repeat of character class, since in general, the
cardinality for character classes is usually very large.

C.1 Analysis
Character classes can be viewed as unions of single character to-

kens, e.g., [0-9] can be viewed as a Union of character tokens 0, 1,
2, ..., 9. They can, therefore, be replaced by equivalent Union oper-
ators in the RegEx query. Another approach to computing character
classes is by performing partial scans on the original input. To see
how, consider the expression

(T)(R1)(R2)(R3)...(Rk)

where T is a token, and each Ri is a character class composed of
|Ri| characters. In order to search for such an expression, we search
for token T, which returns, say, f0 offsets into the input, and scan
starting at each of these offsets for k characters to find all matches
of the expression above.

Intuitively, if the number of occurrences of the token T is small,
then it would be require fewer operations to compute the results
for the expression using partial scans of the input, as opposed to
computing them using the Black Box or Swift approach. We ana-
lytically determine a strategy which minimizes the number of oper-
ations required to compute such an expression. In all of our follow-
ing analysis, we consider the worst case execution time for each of
the approaches.

Partial scans. To evaluate the expression using partial scans, we
scan through each of the offsets corresponding to the occurrences
of T, and scan the input starting at those offsets for k characters.
Thus, the time taken for partial scans is

Ts = f0 + k f0

Black Box approach. To compute the results using the Black box
approach, we search for each of the characters in the character
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Figure 11: Performance gains for Swift optimizations over Black-box approach across different data structures for the Wikipedia dataset. Swift
achieves significant speedups for queries where Swift transformations are applicable (Query#4-5); queries where the transformations are not applicable or
require partial scans see performance similar to black box approach (Query#1-3). Queries marked DNF did not finish within 10 minutes of execution time.
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Figure 12: Performance gains for Swift optimizations over Black-box approach across different data structures for the Pfam-A dataset. Since Swift
transformations are applicable for all queries, Swift offers significantly lower latency compared to the black box approach. Queries marked DNF did not finish
within 10 minutes of execution time.
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Figure 13: Comparison of Swift latency across different data-structures. Query latency results are normalized against Suffix Tree latency. Note that the
higher storage footprint of Suffix Tree offers super-linear gains over Suffix Array and Compressed Suffix Arrays.



ranges, combine them using the Union operator, and finally com-
bine the occurrences of T with the occurrences of character class
tokens using the Concat operator. If Fi be the number of occur-
rences of character range Ri, then the time taken for the black box
approach is:

Tb = f0 +
k

∑
i=1

Fi

Swift approach. With the Swift approach, we perform Pull-Up
Union followed by Pull-Out Concat transformations across
each of the character classes (see §4) to get a transformed RTree
composed of Unions of tokens. The time taken by the Swift ap-
proach would be depend on the number of leaves in the transformed
RTree, and the time taken to perform a union of the results of the
Union operator. It is clear to see that the maximum number of
leaves in the transformed RTree is ∏

k
i=1 |Ri.7 The time taken to

perform the final Union would be equal to the size of the final out-
put (say s0). Therefore, the time to taken by the Swift approach is
given by

Tp =
k

∏
i=1
|Ri|+ s0

Execution Strategy for Black Box. For the Black Box approach
to incur fewer operations, we must have

Ts > Tb

⇒ k f0 >
k

∑
i=1

Fi (1)

Since the number of occurrences of a token is typically much
less than that for a character class, we have,

Fi > f0,∀i (2)

and therefore,

k

∑
i=1

Fi > k f0

This implies that Equation 1 would never hold, and partial scans
would always incur fewer operations compared to the Black box
approach.

Execution Strategy for Swift. As with the Black box approach,
we must have

Ts > Tp

⇒ f0 + k f0 >
k

∏
i=1
|Ri|+ s0

⇒ f0 >
∏

k
i=1 |Ri|
(1+ k)

as s0 > 0.
7In practice, however, we can prune the leaves that have zero oc-
currences while applying the Pull-Out Concat transformation.
The expression shown is therefore an overestimate of the number
of leaves in the RTree.

Since we know the values of f0, k and |Ri| while executing the
query, we can determine whether Swift approach requires fewer
operations than a partial scan during query execution by evaluating
Equation C.1, and pick the optimal strategy on the fly.

Repeat of Character Classes. Consider the expression

(T)(R+)

where T is a token with f0 occurrences, and R is a character class
composed of |R| character tokens. In order to analyze the time taken
for this scenario, we assume k to be the maximum number of repe-
titions, beyond which the Repeat operator yields no results for the
expression above.

Partial scans. For partial scans, the time taken to evaluate the ex-
pression would be similar to the earlier scenario, i.e.,

Ts = f0 + k f0

Black Box approach. If the size of the results for the character
range R be F , then in the worst case, the size of the output for the
expression R+ would be kF . We know from §3.1 that executing the
Repeat operator would take F + kF time. Additionally, perform-
ing the Concat of token T with the expression R+ would take an
additional ( f0 + kF) time. Therefore, the total time taken for the
Black box approach would be

Tb = f0 +(2k+1)F

Swift approach. The total number of leaf nodes in the transformed
RTree for the Swift approach would be given by

|R|+ |R|2 + |R|3 + ...+ |R|k

where the ith term in the expression corresponds to performing the
repeat for the character class i times. Therefore, the total time taken
by the Swift approach is bound by

Tp =
|R|(|R|k−1)
|R|−1

+ s0

Execution Strategy for Black Box approach. For the Black Box
approach to incur fewer operations, we must have

Ts > Tb

⇒ k f0 > (2k+1)F (3)

Since the number of occurrences of a token is typically much
less than that for a character class, we have,

F > f0

and therefore,

(2k+1)F > k f0

This implies that Equation 3 would never hold, i.e., partial scans
would always incur fewer operations than the Black box approach.

Execution Strategy for Swift approach. As before, we must have
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Figure 14: Variation of token frequency with token length for the Wikipedia and Pfam-A datasets. The token frequency decreases as the length of the tokens
is increased for both the datasets.
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Figure 15: Comparison of the number of estimated operations for partial scans, Swift and the actual number of operations for Swift across the Wikipedia
and Pfam-A datasets.

Ts > Tb

⇒ f0 + k f0 >
|R|(|R|k−1)
|R|−1

+ s0

⇒ f0 >
|R|(|R|k−1)

(k+1)(|R|−1)
(4)

as s0 > 0.
Since we know the values of f0, and |R| while executing the

query, we can determine the value of k beyond which partial scans
would incur fewer operations than the Swift approach using Equa-
tion 4 on the fly.

D. OTHER EVALUATION RESULTS
Digging deeper into Swift performance: when and why it
works. Irrespective of the underlying data structure, Swift achieves
its performance benefits by avoiding the Concat operator over the
intermediate results altogether. This is, for instance, the case for
all queries in the bioinformatics application. Besides avoiding the
suboptimal Concat operator, Swift achieves performance benefits
due to another interesting reason. Intuitively, after the transforma-
tions are applied on the RTree, the leaves of the resulting RTree
has tokens that are of length longer than the tokens in the origi-
nal query. Figure 14 shows that, for both Wikipedia and Pfam-A
datasets, the number of occurrences (and hence, the cardinality of
intermediate results) decreases exponentially as the length of the
tokens increase; we see a similar trend for the Wikipedia dataset.
The operators up the RTree, hence, operate on smaller cardinality

sets leading to further improvements in the query latency.
Finally, we observe that Swift performance varies significantly

across queries. Interestingly, there is a particular parameter that al-
lows us to explain this performance difference. It turns out that
Swift performance is proportional to the number of leaves with
non-zero occurrences in the transformed RTree. Of course, it is
hard to find the number of leaves with non-zero occurrences apri-
ori since it depends on the input file. We can, however, estimate
this by assuming that each leaf in the RTree has non-zero number
of occurrences. The number of leaves are then given by the carte-
sian product of the sets corresponding to each token in the original
RTree. Our evaluation (see below) suggests that in most cases (ex-
cept for one query, Query#8), the total number of leaves computed
using the cartesian product provides a good estimate for the num-
ber of leaves in the transformed RTree. Intuitively, this is because
most of the tokens have at least a few occurrences in large datasets.

Number of Leaves in the transformed RTree. The performance
variation across different RegEx queries for Swift can be explained
on the basis of the number of leaves in the transformed RTree. In
particular, the latency of execution of RegEx queries in the Swift
approach is proportional to the number of leaves in the transformed
RTree; Figure 15 demonstrates this. Following our analysis in Ap-
pendix C, we estimate the number of operations required for Swift
and partial-scan approaches for RegEx queries containing charac-
ter classes; we see that our analysis provides a reasonable estimate
of the actual number of operations for the queries in our evalua-
tion. Queries where the number of leaves in the transformed RTree
is high tend to require higher number of Swift operations; in such
situations, our analysis provides a means to determine whether the
RegEx execution should adopt partial-scans or the Swift approach.
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